

Preliminary results from a new model of the lo torus, fed by the two Juno fly-bys of Io

AUTHORS: Giuliano VINCI⁽¹⁾⁽²⁾, Michel BLANC⁽¹⁾, Nicolas ANDRÉ⁽¹⁾, Marie DEVINAT⁽¹⁾, Quentin NÉNON⁽¹⁾

Affiliations: 1: IRAP, Institut de Recherche en Astrophysique et Planétologie (CNRS - Université Toulouse III) 2: Sapienza University of Rome - Department of Mechanical and Aerospace Engineering

WHAT IS THE IO TORUS?

- Zone where ions, electrons, neutrals meet.
- Io has a dense SO2 atmosphere.
- The neutrals sputtered from Io's exosphere and the plasma particles corotating with the magnetic field interact.
- Neutrals are ionised by electrons and ions; ions recombine into neutrals, in a two-way interaction.

PAST OBSERVATIONS

- Several missions crossed the plasma torus in the past: Pioneer 10 & 11, Voyager 1, Ulysses, Galileo.
- Other missions explored the torus from a distance: Cassini, Hisaki.

FROM JUNO TO THE NEXT

- After roaming in the Jovian system, Juno will fly by Io on December 30, 2023, and February 3, 2024.
- This will feed our model with new information from several instruments: JADE, JEDI, Waves, GRAV.
- The wealth of past data and incoming observations will constrain the model parameters.
- The remote sensing data from HST, Hisaki, JWST and ground-based telescopes will be assimilated into the model.

PRESENT RESULTS

The abundances of charged particles from Galileo and Juno missions can provide a globally rich coverage of the Io plasma torus.

IMPACT

- For the first time, a model will merge all these observations into one framework: plasma spectrometry, radio science, UV/IR/Visible spectroscopy, both in-situ and from remote.
- This will better model the properties of the torus, for future missions: JUICE and Europa Clipper.

REFERENCES

OUSTANDING QUESTIONS

- What are the coupling mechanisms in terms of chemistry and dynamics?
- What is the relationship between volcanism on Io and magnetospheric transport?

OUR APPROACH

We are going to develop a model of the coupling between the neutral and plasma tori, aiming at assimilating different observations.

- Simulated 2D distributions of neutrals in the torus were provided us on some Z-aligned planes.
- In order to interpolate these results, we have built a toroidal harmonics expansion tool.
- The harmonic coefficients will be fitted upon the known density points.

PLASMA MODELING

- The model will assume already-known first guess densities on the equator.
- Neutral species will act as source terms in the plasma equilibrium equation, with input densities coming from the neutral model.
- Plasma densities will be mapped along the field lines by using the theory of field line equilibrium:

 $\frac{\partial P_{||}}{\partial s} - \left(P_{||} - P_{\perp}\right) \frac{1}{B} \frac{\partial B}{\partial s} - m_i n_i \frac{\partial}{\partial s} \left[\frac{1}{2} \Omega^2 R^2(s)\right] + n_i \frac{\partial}{\partial s} \left[G \frac{M_J m_i}{r}\right] + n_i Z_i q \frac{\partial \Phi}{\partial s} = 0$