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The thermal and energetic electrons along Ganymede’s orbit not only weather the
surface of the icy moon, but also represent a major threat to spacecraft. In this article,
we rely on Juno plasma measurements to characterize the temporal and spatial variabil-
ity of the electron environment upstream of Ganymede. In particular, we find that elec-
tron spectra observed by Juno have fluxes larger by a factor of 2 to 9 at energies above
10 keV than what was measured two decades earlier by Galileo. This result will advance
our understanding of the surface weathering and may be a concern for the radiation safety

of the JUICE mission. Furthermore, the June 2021 close fly-by of Ganymede reveals that

the open field line regions of its magnetosphere attenuate electron fluxes at all energies

by a factor of 1.6 to 5, thereby offering a natural shelter to visiting spacecraft.

Context Comparison with models

The upstream electron distribution informs on the state of the Jovian magnetosphere

T L g Statistical analysis and comparison with Galileo-based observations and models

and governs the Ganymede-magnetosphere interaction (Fatemi et al., 2016; Plainaki et

al., 2015; Poppe et al., 2018; Liuzzo et al., 2020), electron precipitation to the surface p—

(e.g. Liuzzo et al., 2020), and ionization of the moon exosphere (e.g. Vorburger et al.,
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2022; Leblanc et al., 2017; 2023). Whereas both short- and long-term dynamics as well
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plasma at the orbit of Ganymede have been previously reported (Krupp et al., 2004; Mauk
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et al., 1999; Mauk et al., 2020; Jun et al., 2005; Bagenal et al., 2016; Vogt et al., 2022),

the impact of this variability has however not been fully explored in those previous stud-
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ies. Paranicas et al. (2021) recently reported electron differential fluxes measured by Juno
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(Bolton et al., 2017) near Ganymede’s orbital distance significantly higher than previ- (b) .
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ously considered, although they acknowledged that their study only provided a single

snapshot of the prevailing plasma and energetic particle conditions there at the time of
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their measurements.
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Combining observations from the JADE and JEDI instruments to the first and second term of the bi-kappa distribution covering JADE and JEDI energies, re-

spectively. The black solid line corresponds to the bi-kappa distribution given by equation (2)

Intercalibration of the JADE and JEDI omnidirectional electron fluxes when the two terms are summed. The black dash-dotted line represents the absolute value of the
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the average electron omnidirectional fluxes in the key regions of our study. All the omnidirec-

ticular at high energies.
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tional fluxes j are in electrons per cm®-s-sr-keV and all the energies E, and E, are in keV.



