Energy transfer rate estimation by an
-like constellation in an Hall-MHD simulation
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estimate from the future 9-point HelioSwarm magnetic field/plasma
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In our analysis, we assume dx=0.1 c/wpi=100 km in the SW
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m Convergence toward a non-zero value

m The convergence distance depends on the chosen orientation
m The convergence values corresponds to the components of the vector Y (the Yaglom flux)
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Computation of the Yaglom flux : spatial average
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In real space:

- Field measurement at each spacecraft

- The curl/div is computed at the center of mass of a given teatrahedron
- With 9 spacecraft, (g) = 126 tetrahedra are used to compute 126 values

— These values are usually averaged to obtain a final value at the center of mass of the full

swarm

In lag space:

— Similar approach is done for the computation of W Y* .

- With 36 lags, () = 58905 tetrahedra can be built

- Statistical distribution of E’ - Y* values can then be produced .

Representation of the 36 lags
(inter-spacecraft separations)
with one example tetrehedra

“lag Polyhedral Derivative Ensemble” method
(Pecora et al., 2023)

Inter-spacecraft separations, in the lag space, t=94h
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Dissipation rate calculation

m Distribution obtained with the

Value of the dissipation rate €, obtained with the divergence method,

divergence method
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Selecting the best tetrahedra

Quality thresholds can be applied on the elongation (E) and planarity (P) values of each
tetrahedral configuration (E and P are computed from the eigenvalues of the volumetric tensor)

Typically / (E2 + P2)< 0.6 or 1 are used to retain only pseudo-sphere or potato type
configurations known to perform well for curl/div computation

Similar criteria can be applied in lag space

Diagram (E,P) for the hour t=94h
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Restriction on tetrahedral configurations in
lag space

« ¥ =V(E? 4+ P?) < 1: 21063 tetrahedra are selected

e ¥ < 0.6: 276 tetrahedra are selected

* The resulting € is not varying too much with reduced set of tetrahedra

Diagram (E,P) for the hour t=144h
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Diagram (E,P) for the hour t=205h
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Example: E, P values of the 126 HelioSwarm tetrahedra at 3 different times / configurations
L is the characterictic scale of tetrahedron
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Conclusions

* The general method is a smart way to estimate €

* HelioSwarm will be able to provide the energy transfer rate in a
variety of regimes of the solar wind
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