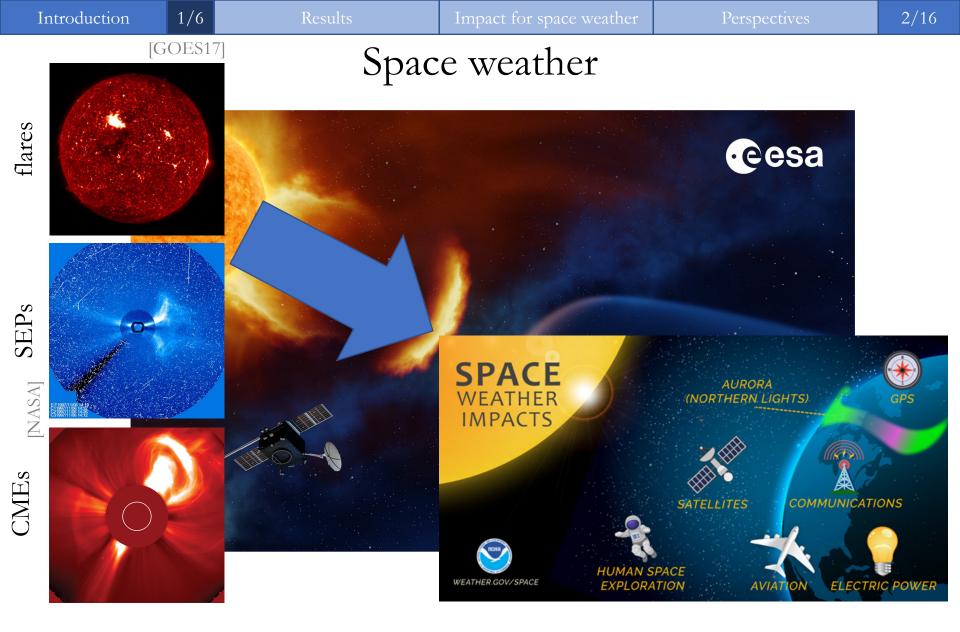
Impact of magnetic photospheric observations on the modelling of coronal and heliospheric magnetic structures

By Dr. Barbara PERRI¹ •

Collaborators: Dr. Peter LEITNER², Dr. Stefaan POEDTS¹, Dr. Andréa LANI¹, Michaela BRCHNELOVA¹, Tinatin BARATASHVILI¹, Dr. Fan ZHANG¹, Dr. Blazej KUZMA¹

> 1. CmPA, KU Leuven, Belgium 2. Institute of Physics, Graz, Austria

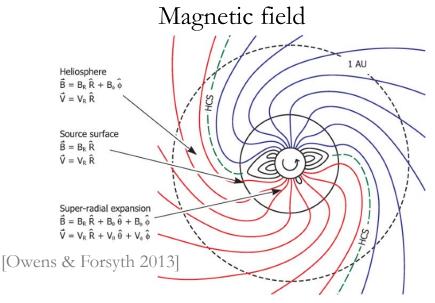
Barbara PERRI


UNI

Horizon 2020

19/05/2022

 \rightarrow Space weather forecasting depends heavily on the modeling of the heliosphere


Barbara PERRI

[McComas+2003]

Speed (km s")

Solar wind

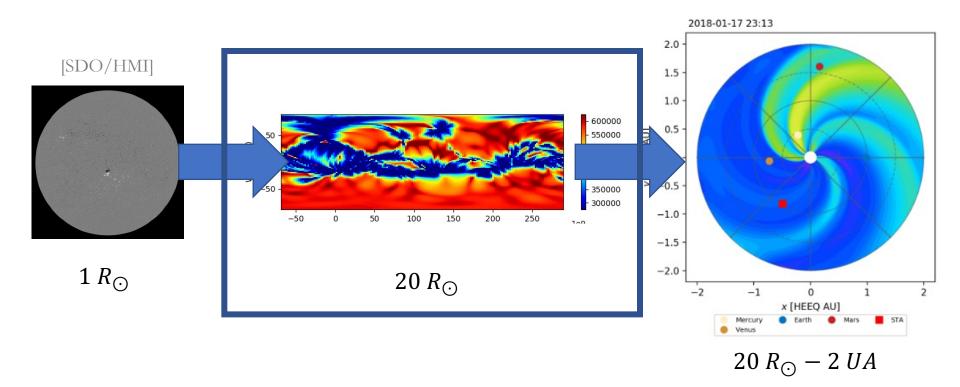
Heliospheric structures

2/6

Large-scale structures: Parker spiral + heliospheric current sheet (HCS)

Barbara PERRI

[NASA]

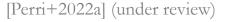

Colloque PNST 2022

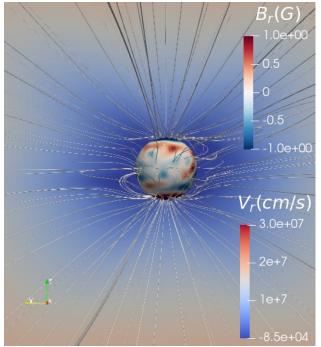
ULYSSES/SWOOPS [cs Alamos 1000 1000 Hauron Law MICH (1946) Ontward IN LASCO CE (NRL) [Hundhausen 1972] [Carnevale+2022] Kalt-speed street Rarefaction region Ecliptic plane High-Speed Streams (HSS) + Co-rotating Interacting Regions (CIRs)

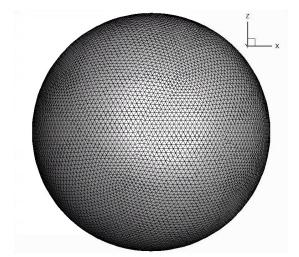
Marseille, France

EUHFORIA 2.0

Chain of data-driven heliospheric simulations from the solar surface to the Earth


The extrapolations from 1 to 20 solar radii are semi-empirical


 \rightarrow this is where most of the structures are created!


 \rightarrow we want to replace it with a more physical code (MHD) BUT still fast!

Results

COCONUT

COolfluid COronal uNstrUcTured → Based on the COOLFluiD framework

[Lani+2005/2006, Kimpe+2005, Maneva+2017]

Ideal MHD model for the solar wind in the

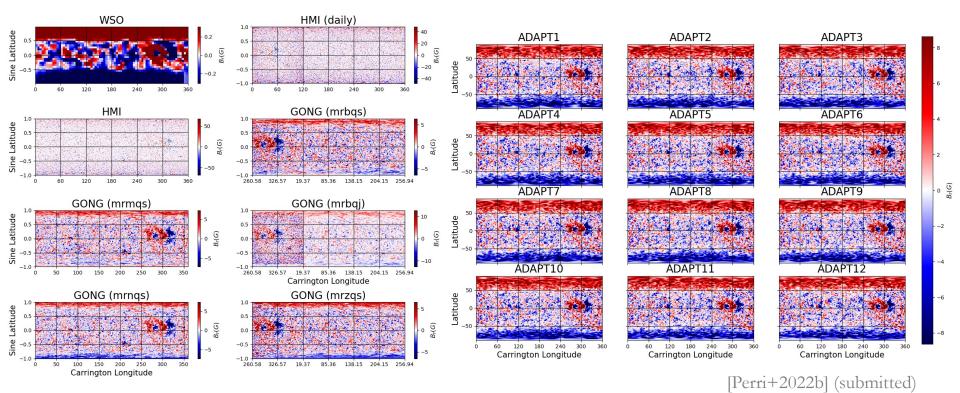
corona (from 1 to 25 solar radii):

- Cartesian geometry
- Finite volume + Riemann solvers
 - Polytropic heating

Advantages:

- Unstructured mesh → no singularity at the solar poles
 - Implicit solving method \rightarrow fast and accurate

[Brchnelova+2022]

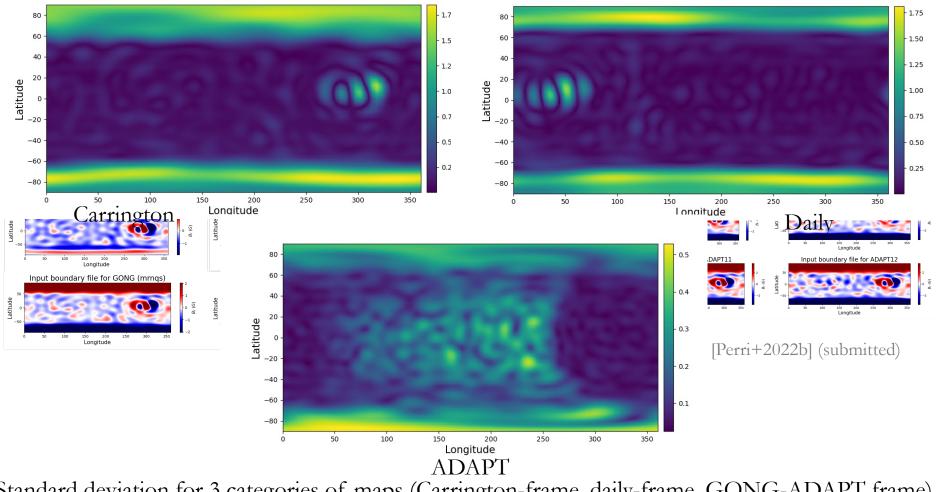

Introduction 5/6	Results	Impact for sp	pace weather	Р	erspectives	6/16		
[Perri+2022a] (under review) Validation of the code								
COCONUT (),(m,s-1) (),(m,s-1								
[Réville+2015a, Perri+2018] Benchmark with both simulations (Wind-Predict) and observations (WL + EUV)		Configur	ation	COCONU' running tim				
		Dipole		5.9 min				
			Quadrupole		11.9 min			
	speed-up of the implic		Magnetic $(l_{max} =$	-	87.5 min (1h2	.8)		
→ operational running times			Magnetic (l _{max} =	-	86.8 min (1h2	.7)		

Barbara PERRI

Marseille, France

Impact of the input map

→ Test of all 20 maps available for a typical minimum of activity (2nd of July 2019)


Aims of the study:

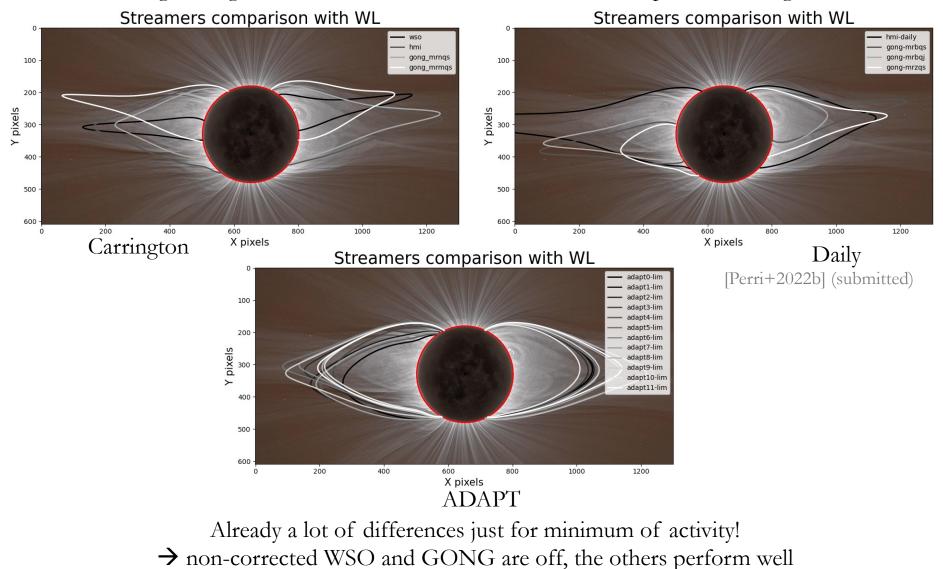
- Quantify which map works best at minimum of activity
- Evaluate the impact of the solar poles (space weather + Solar Orbiter)

Pre-processing of the maps

1/4

We apply a pre-processing by spherical harmonics cutting $(l_{max} = 15)$ \rightarrow Magnetic maps smoothened

Standard deviation for 3 categories of maps (Carrington-frame, daily-frame, GONG-ADAPT frame)


 \rightarrow The biggest source of difference between the maps are the poles

Barbara PERRI

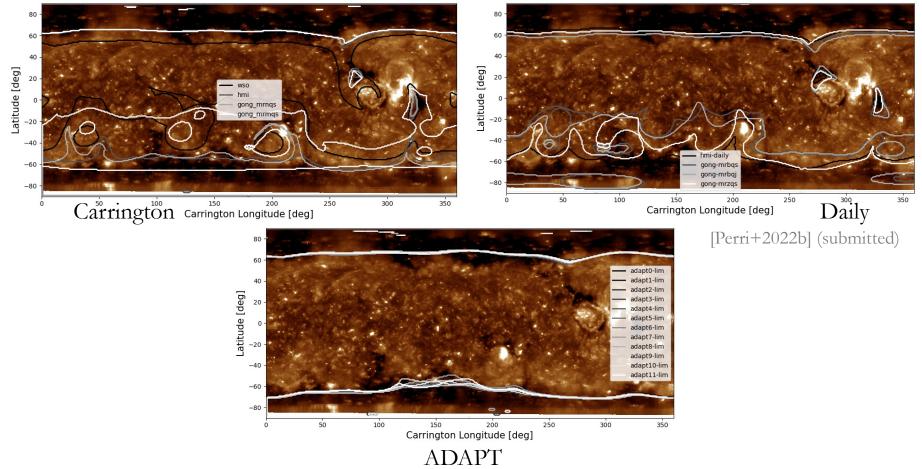
Colloque PNST 2022

Comparison with observations: WL for streamers

We use white-light images of the corona to estimate the size and shapes of the magnetic streamers

Barbara PERRI

Colloque PNST 2022


Marseille, France

Introduction

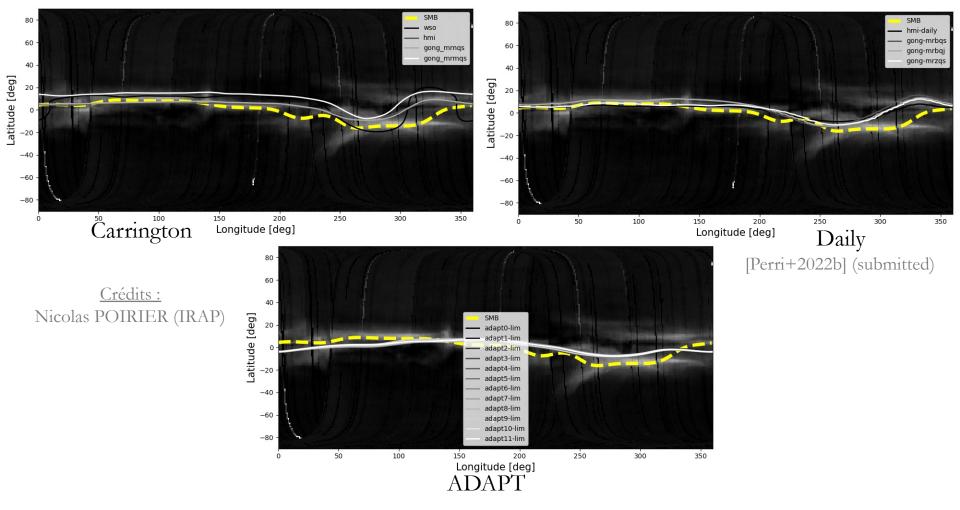
Comparison with observations: EUV for coronal holes

3/4

We use EUV images of the corona to estimate the size and shapes of the coronal holes (CHs)

The northern coronal is well estimated, but a lot of differences for the southern and equatorial ones → non-corrected WSO and GONG are off, and GONG-ADAPT misses the equatorial CHs

Barbara PERRI


Introduction

11/16

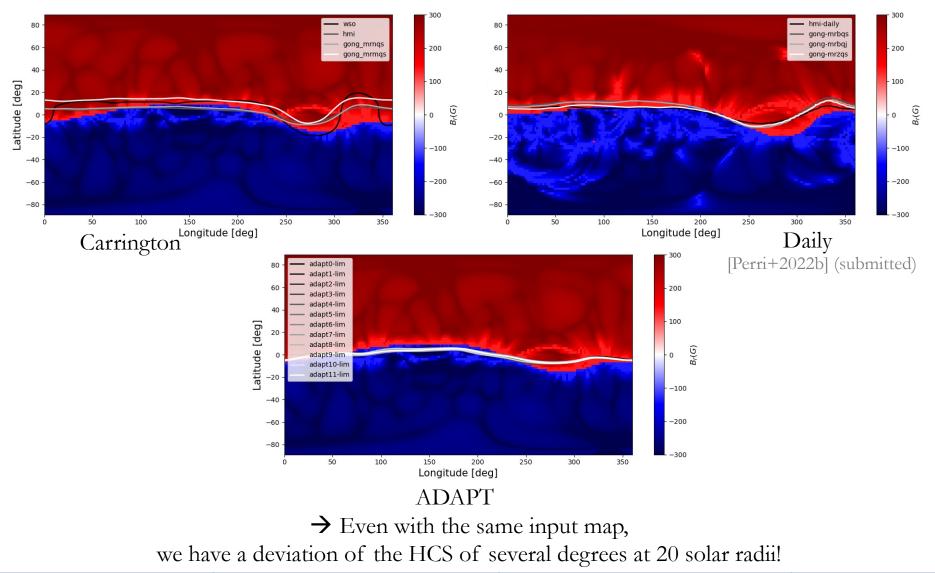
Comparison with observations: WL for HCS

4/4

We use white-light images of the corona to estimate the size and shape of the HCS

All maps perform well (but easy case at minimum of activity)

Barbara PERRI


Colloque PNST 2022

12/16

19/05/2022

Impact for space weather forecasts

We compare the HCS found by our MHD model with the one found by PFSS+SCS

Barbara PERRI

Colloque PNST 2022

13/16

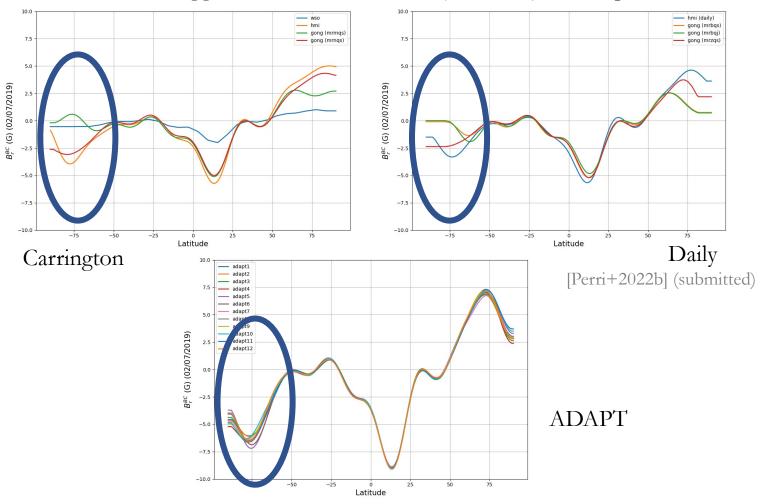
Which map to choose?

[Perri+2022b] (submitted)

Map	Streamers ratio	Polar CH ratio	Eq. CH ratio	SB deviation	
WSO	left: 28.0% , right: 24.0%	North: 72.8% , South: 33.7%	10.7%	$\delta_{max} = 30.8^{\circ} , \ \delta_{mean} = 9.22^{\circ}$	
HMI	left: 84.2% , right: 74.7%	North: 86.1%, South: 40.6%	37.4%	$\delta_{max} = 17.5^{\circ}, \ \delta_{mean} = 4.88^{\circ}$	
GONG (mrmqs)	left: 54.4%, right: 37.7%	North: 87.1%, South: 23.9%	8.8%	$\delta_{max} = 27.9^{\circ} , \ \delta_{mean} = 11.9^{\circ}$	
GONG (mrnqs)	left: 74.9%, right: 65.6%	North: 86.2%, South: 42.0%	26.2%	$\delta_{max} = 19.1^{\circ}, \delta_{mean} = 4.98^{\circ}$	
HMI (daily)	left: 66.2%, right: 70.1%	North: 86.3%, South: 40.1%	65.5 <mark>%</mark>	$\delta_{max} = 16.1^{\circ}, \ \delta_{mean} = 4.30^{\circ}$	
GONG (mrbqs)	left: 39.1%, right: 41.6%	North: 80.3% , South: 33.9%	11.6%	$\delta_{max} = 23.9^{\circ} , \ \delta_{mean} = 7.35^{\circ}$	
GONG (mrbqj)	left: 47.3%, right: 32.8%	North: 79.2%, South: 32.5%	11.4%	$\delta_{max} = 20.5^\circ, \ \delta_{mean} = 6.43^\circ$	
GONG (mrzqs)	left: 29.1%, right: 53.6%	North: 85.2%, South: 39.2%	20.4%	$\delta_{max} = 19.7^{\circ}, \ \delta_{mean} = 4.66^{\circ}$	
ADAPT (1)	left: 64.3%, right: 77.8%	North: 88.1%, South: 44.4%	0.0%	$\delta_{max} = 10.5^{\circ}, \delta_{mean} = 5.36^{\circ}$	
ADAPT (2)	left: 61.7%, right: 77.1%	North: 87.9%, South: 44.1%	0.0%	$\delta_{max} = 9.99^{\circ}, \delta_{mean} = 5.60^{\circ}$	
ADAPT (3)	left: 69.4%, right: 72.4%	North: 88.3%, South: 44.0%	0.0%	$\delta_{max} = 10.5^{\circ}, \delta_{mean} = 5.57^{\circ}$	
ADAPT (4)	left: 77.0% , right: 85.5%	North: 87.9%, South: 43.9%	0.0%	$\delta_{max} = 9.69^{\circ}$, $\delta_{mean} = 4.76^{\circ}$	
ADAPT (5)	left: 61.4%, right: 79.5%	North: 87.8%, South: 44.5%	0.0%	$\delta_{max} = 9.84^{\circ}, \delta_{mean} = 5.09^{\circ}$	
ADAPT (6)	left: 66.3%, right: 78.1%	North: 87.5%, South: 44.1%	0.0%	$\delta_{max} = 10.0^{\circ}, \delta_{mean} = 5.84^{\circ}$	
ADAPT (7)	left: 72.1%, right: 78.5%	North: 87.2%, South: 43.6%	0.0%	$\delta_{max} = 10.4^{\circ}, \delta_{mean} = 6.20^{\circ}$	
ADAPT (8)	left: 61.9%, right: 87.9%	North: 87.4%, South: 45.3%	0.0%	$\delta_{max} = 9.63^{\circ}$, $\delta_{mean} = 5.75^{\circ}$	
ADAPT (9)	left: 75.4%, right: 77.6%	North: 87.7%, South: 43.4%	0.0%	$\delta_{max} = 10.3^{\circ}, \delta_{mean} = 5.91^{\circ}$	
ADAPT (10)	left: 61.3% , right: 80.5%	North: 88.0%, South: 44.9%	0.0%	$\delta_{max} = 9.39^{\circ}$, $\delta_{mean} = 4.99^{\circ}$	
ADAPT (11)	left: 80.0%, right: 64.1%	North: 88.1%, South: 44.7%	0.0%	$\delta_{max} = 10.4^{\circ}, \delta_{mean} = 5.73^{\circ}$	
ADAPT (12)	left: 76.1%, right: 85.8%	North: 87.9%, South: 44.5%	0.0%	$\delta_{max} = 10.0^{\circ}, \delta_{mean} = 5.52^{\circ}$	

\rightarrow HMI and GONG-ADAPT perform the best

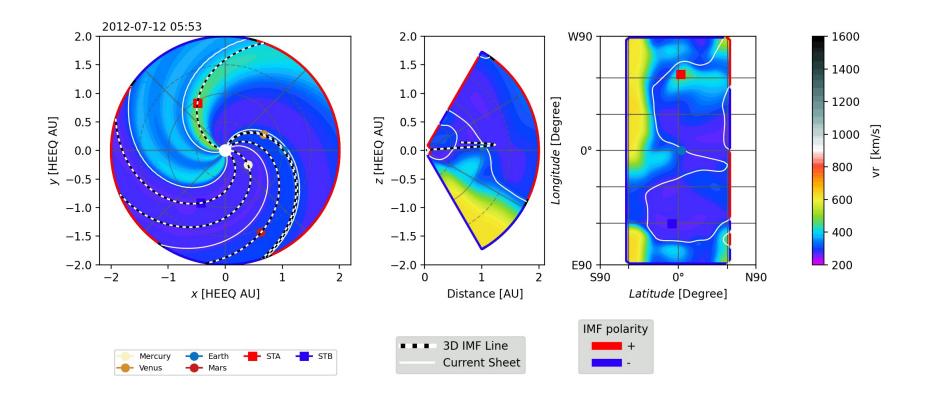
 \rightarrow WSO and GONG should not be used without the proper corrections!


Barbara PERRI

Colloque PNST 2022

Marseille, France

Influence of the solar poles


The biggest source of difference (and error) are the poles

→ The solar poles have a crucial role for space weather forecast and should be kept in the corona
 → Solar Orbiter polar data are going to be extremely useful to harmonize the maps!

Next steps

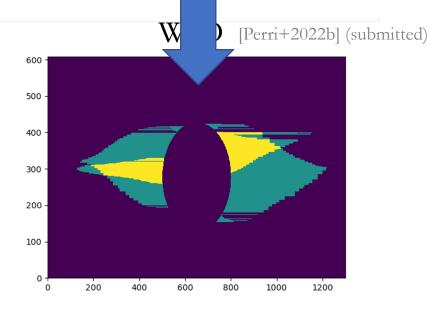
- Improve COCONUT by improving the coronal heating
- Test the map results for other codes and other dates (maximum of activity)
 - Test the results for space weather forecasts (WSA + CME)

Conclusion

Methods:

We have used our new coronal MHD model COCONUT to investigate the 20 magnetic maps available for the 2nd of July 2019

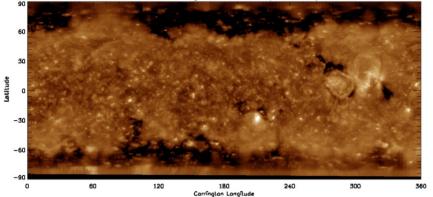
 \rightarrow quantification of the results using WL (streamers) + EUV (CHs) + SMB (HCS)

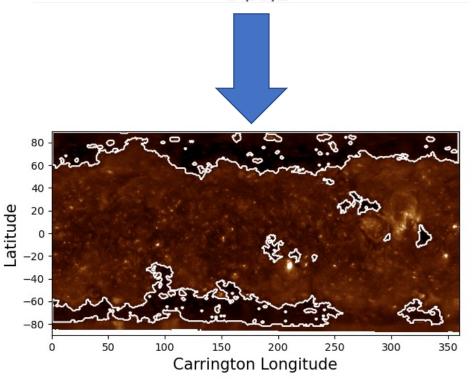

Take-home messages:

- Even at minimum of activity, different input magnetic maps are going to generate different configurations for the corona
 - HMI and GONG-ADAPT are recommended
 - WSO and GONG should always be used with the appropriate corrections
- The solar poles play an important role in space weather forecasting (HCS + CHs)

Thank you for	your attention!	<u>Acknowledgements:</u> uropean Union's Horizon 2020 project "Heliospheric modellin (AO10125-GT18-004EI	g techniques"
Barbara PERRI	Colloque PNST 2022	Marseille, France	19/05/2022

Appendix: Streamers coverage

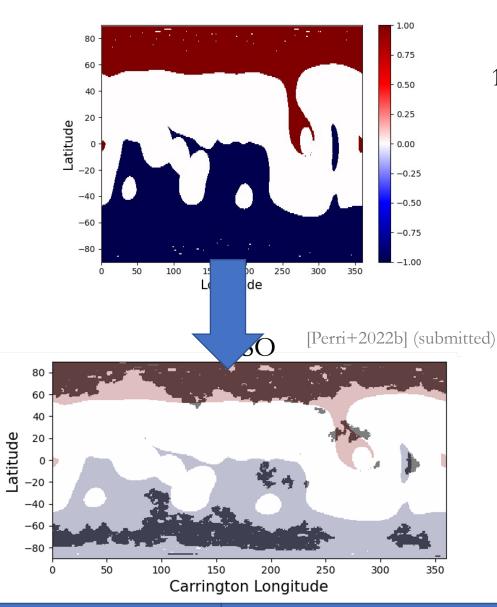




- We extract manually from the WL image the approximated shape of the streamers' edges
 - 2. We extract automatically from our simulations the largest closed magnetic field lines for the streamers' edges
 - 3. We adjust the two datasets to have the same reference length (solar radius)
- We compute the coverage map (purple: pixel in no streamer; green: pixel in 1 streamer; yellow: pixel in 2 streamers)
- 5. We compute the coverage ratio (yellow pixels over the biggest streamer)

Appendix: Coronal holes extraction

AIA 193Å Carrington Rotation 2219 (2019-6-29)



We download SDO/AIA EUV synoptic maps for one CR (195 channel)

[Caplan+2016]

We extract automatically the coronal pixels by using the EZSEG algorithm (1st threshold: 20; 2nd threshold: 35; 3 neighbors)

Appendix: Coronal holes coverage

- We use magnetic seeds distributed over a 200x400 points sphere to compute field lines
- We identify open field lines and mark their seeds with the corresponding polarity
 - 3. We overimpose the coronal holes detected from data
- 4. We compute the coverage ratio (gray pixels over colored pixels)