MAGNETIC HELICITY Marker of solar eruptivity

Colloque scientifique du PNST, Marseille, May 16-20th 2022

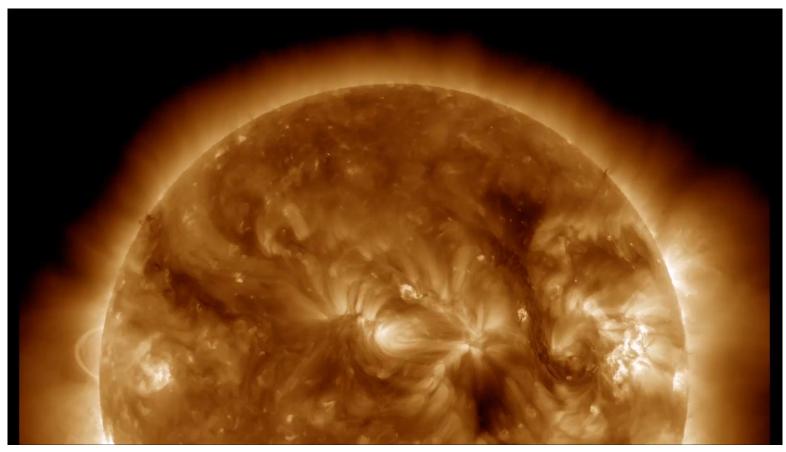
Sorbonne Université, Ecole polytechnique, Institut Polytechnique de Paris, Université Paris Saclay, Observatoire de Paris-PSL, CNRS, Laboratoire de Physique des Plasmas (LPP)

G. Valori¹, L. Linan², K Moraitis³, J. Thalmann⁴, J.L. Leake⁵, X. Sun⁶, P. Wyper⁷

¹ MPS, Germany ; ² KU Leuven, Belgium, ³ Univ. Ioannina, Greece

⁴ Univ. Graz, Austria, ⁵ NASA GFSC, USA, ⁶ Univ. Hawaii, USA, ⁷ Durham Univ., UK

toire de Physique des Plasmas



- Context : prediction of solar flare/eruption
- Magnetic helicitie
- Helicity eruptivity index : results from numerical simulations
- Helicity eruptivity index : results from observations
- Conclusion

Solar eruptions

- **B**HPP
 - Advanced forecast of solar eruption onset is one of the key need in space weather.
 - Surveillance allows very limited anticipation window against impact of electromagnetic emissions and energetic particles

Credit: NASA/SDO

Efficiency of flares & eruptions forecasting

- Efforts toward predictions of flares and eruptions in advance has grown in the last decade.
- Multiplication of daily forecasts centers and methods: MET Office, SWPC, SIDC, ...
- Barnes et al. 2016: comparison of a large number of forecasting methods with a common dataset:
 - "[...], none of the methods achieves a particularly high skill score. [...].Thus there is considerable room for improvement in flare forecasting."

SUCCESS RATES AND SKILL SCORES FOR THE SAMPLE PARAMETERS

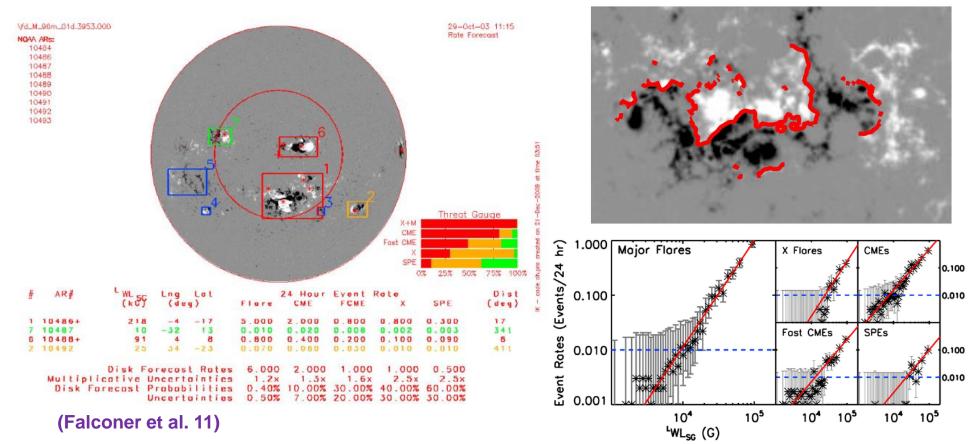
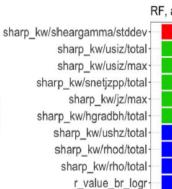

Parameter	ter Rate Skill Score		Climatological Skill Score		
No Flare	0.908	0.000	0.000		
$\Phi_{ m tot}$	0.922	0.153	0.197		
E_e	0.916	0.081	0.231		
<i>R</i>	0.922	0.144	0.242		
<i>B</i> _{eff}	0.913	0.072	0.220		

Table 4.	Performance of	on All	Data w	vith Refe	erence Fe	orecast
----------	----------------	--------	--------	-----------	-----------	---------

Parameter/	Statistical	C1.0 +	$24\mathrm{hr}$	M1.0 +	$, 12 \mathrm{hr}$	M5.0+	$, 12 \mathrm{hr}$
Method	Method	ApSS	BSS	ApSS	BSS	ApSS	BSS
$\mathrm{B}_{\mathrm{eff}}$	Bayesian	0.12	0.06	0.00	0.03	0.00	0.02
ASAP	Machine	0.25	0.30	0.01	-0.01	0.00	-0.84
BBSO	Machine	0.08	0.10	0.03	0.06	0.00	-0.01
WL_{SG2}	Curve fitting	N/A	N/A	0.04	0.06	0.00	0.02
NWRA MAG 2-VAR	NPDA	0.24	0.32	0.04	0.13	0.00	0.06
$\log(\mathcal{R})$	NPDA	0.17	0.22	0.01	0.10	0.02	0.04
GCD	NPDA	0.02	0.07	0.00	0.03	0.00	0.02
NWRA MCT 2-VAR	NPDA	0.23	0.28	0.05	0.14	0.00	0.06
SMART2	CCNN	0.24	-0.12	0.01	-4.31	0.00	-11.2
Event Statistics, 10 prior	Bayesian	0.13	0.04	0.01	0.10	0.01	0.00
McIntosh	Poisson	0.15	0.07	0.00	-0.06	N/A	N/A

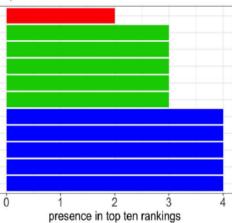
Flares & eruptions forecasting approach

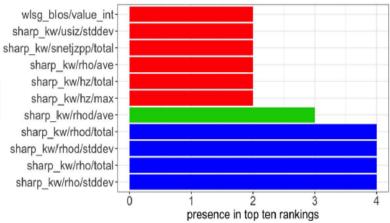
- **B**HPP
- Prediction are not based on determinist approach but on an empirical one:
- Correlations between:
 - Characteristics of ARs: McIntosh class, Mt Wilson magnetic class, PIL length, magnetic properties, ...
 - Observed probability for a region with a given characteristic to flare


Flare Predictions

- Extensive search for eruption proxy: e.g. Leka & Barnes 07, Sinha et al. 22, FLARECAST Project (Manolis et al. 21),
 - Single criteria alone gives very poor prediction : combination of several criterion improves prediction.
- Predictions are only based on necessary conditions
 - No clear physical criterion of sufficient conditions for eruption trigger
- Prediction are only based on 2D photospheric data
- Need to explore 3D structure of active regions:
 - → Magnetic Helicity

Parameters Use	IN THE DISCRIMINANT ANALYSIS	
Description Formula		
Att	nospheric Seeing	
Median of the granulation contrast	$s = median(\Delta I)$	
Distribut	ion of Magnetic Fields	
Moments of vertical magnetic field	$B_z = \mathbf{B} \cdot \mathbf{e}_z$	
Total unsigned flux	$\Phi_{ m tot} = \sum B_z dA$	
Absolute value of the net flux	$ \Phi_{\text{net}} = \sum_{z \neq 1/2} B_z dA$	
Moments of horizontal magnetic field	$B_h = \left(B_x^2 + B_y^2\right)^{1/2}$	
Distributi	on of Inclination Angle	
Moments of inclination angle	$\gamma = \tan^{-1}(B_z/B_h)$	
Distribution of the Magnitude of	the Horizontal Gradients of the Magnetic Fields	
Moments of total field gradients	$\begin{aligned} \nabla_h B &= \left[(\partial B/\partial x)^2 + (\partial B/\partial y)^2 \right]^{1/2} \\ \nabla_h B_z &= \left[(\partial B_z/\partial x)^2 + (\partial B_z/\partial y)^2 \right]^{1/2} \end{aligned}$	
Moments of vertical field gradients	$ \nabla_h B_z = \left[(\partial B_z / \partial x)^2 + (\partial B_z / \partial y)^2 \right]^{1/2}$	
Moments of horizontal field gradients	$\left \nabla_{h}B_{h}\right = \left[\left(\partial B_{h}/\partial x\right)^{2} + \left(\partial B_{h}/\partial y\right)^{2}\right]^{1/2}$	
Distribution	of Vertical Current Density	
Moments of vertical current density	$J_z = C(\partial B_y / \partial x - \partial B_x / \partial y)$	
Total unsigned vertical current	$I_{\text{tot}} = \sum J_z dA$	
Absolute value of the net vertical current	$ I_{\rm net} = \sum J_z dA $	
Sum of absolute value of net currents in each polarity	$ I_{\text{net}}^B = \sum_{z} J_z(B_z > 0) dA + \sum_{z} J_z(B_z < 0) dA $	
Moments of vertical heterogeneity current density ^a	$J_z^n = C(b_y \partial B_x / \partial y - b_x \partial B_y / \partial x)$	
Total unsigned vertical heterogeneity current	$egin{array}{ll} I_{ ext{tot}}^h &= \sum [J_z^h] dA \ I_{ ext{tot}}^h &= \sum J_z^h dA \end{array}$	
Absolute value of net vertical heterogeneity current	$\left I_{\rm net}^{h}\right = \left \sum J_{z}^{h} dA\right $	
Distribut	ion of Twist Parameter	
Moments of twist parameter ^b	$\alpha = C J_z / B_z$	
Best-fit force-free twist parameter ^b	$\boldsymbol{B} = \alpha_{\mathrm{ff}} \nabla \boldsymbol{\times} \boldsymbol{B}$	
Distribut	ion of Current Helicity	
Moments of current helicity ^c	$h_c = CB_z(\partial B_y/\partial x - \partial B_x/\partial y)$	
Total unsigned current helicity	$H_c^{\text{tot}} = \sum h_c dA$	
Absolute value of net current helicity	$\left H_{c}^{\text{net}}\right = \left \sum h_{c} dA\right $	
Distrib	ution of Shear Angles	
Moments of 3D shear angle ^d	$\Psi = \cos^{-1}(\boldsymbol{B}^p \cdot \boldsymbol{B}^o / \boldsymbol{B}^p \boldsymbol{B}^o)$	
Area with shear $\geq \Psi_0$, $\Psi_0 = 45^\circ$, 80°	$A(\Psi > \Psi_0) = \sum_{\Psi > \Psi_0} dA$	
Moments of neutral line shear angle	$\Psi_{\mathrm{NL}} = \cos^{-1}(\boldsymbol{B}_{\mathrm{NL}}^{p} \cdot \boldsymbol{B}_{\mathrm{NL}}^{o} / B_{\mathrm{NL}}^{p} B_{\mathrm{NL}}^{o})$	
Length of neutral line with shear $\geq \Psi_0$	$L(\Psi_{\mathrm{NL}} > \Psi_0) = \sum_{\Psi_{\mathrm{NL}} > \Psi_0} dL \ \psi = \cos^{-1}(oldsymbol{B}_h^{ ho} oldsymbol{\cdot} oldsymbol{B}_h^{ ho}) B_h^{ ho} B_h^{ ho})$	
Moments of horizontal shear angle e	$\psi = \cos^{-1}(\boldsymbol{B}_h^p \cdot \boldsymbol{B}_h^o / \boldsymbol{B}_h^p \boldsymbol{B}_h^o)$	
Area with horizontal shear $\geq \psi_0$	$A(\psi > \psi_0) = \sum_{\psi > \psi_0} dA$	
Distribution of Photosph	eric Excess Magnetic Energy Density	
Moments of photospheric excess magnetic energy density ^d	$\rho_o = (\boldsymbol{B}^p - \boldsymbol{B}^o)^2 / 8\pi$	
	$E_e = \sum \rho_e dA$	


(Leka & Barnes 07)


flare index past

(Campi et al. 19)

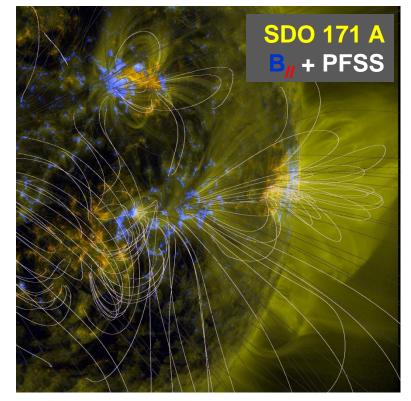
RF, at least C1

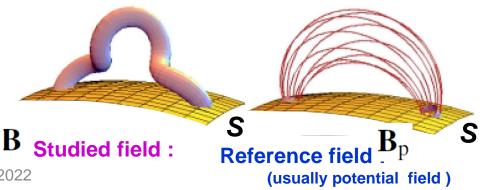
RF, at least M1

- Context : prediction of solar flare/eruption
- Magnetic helicitie
- Helicity eruptivity index : results from numerical simulations
- Helicity eruptivity index : results from observations
- Conclusion

Definition of Magnetic Helicity

• Helicity of the magnetic field in MHD plasmas (Elsasser 56)


$$H_{\rm m} = \int_{\rm v} \boldsymbol{A} \cdot \boldsymbol{B} \,\mathrm{d}V, \qquad \nabla \times \mathbf{A} = \mathbf{B}$$


- Magnetic helicity: signed level of knotedness and twist of magnetic field lines
- Helicity gauge invariant only for magnetically bounded systems: $\mathbf{B} \cdot \mathbf{dS} |_{s} = 0$
- Strict definition of magnetic helicity useless for large number of cases
- → Useful quantity: **Relative Magnetic Helicity**:

helicity of the studied field, **B**, relative to a reference field (Berger 84, Finn & Antonsen 85).

$$H_{\mathcal{V}} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) \, d\mathcal{V} \quad \text{(Finn \& Antonsen 85)}$$

with boundary condition : $(B_p \cdot dS) |_{\partial V} = (B \cdot dS) |_{\partial V}$

Colloque du PNST ; E. Pariat, May ; 16th 2022

Magnetic

potential

vector

Potential & Non Potential: Field; Energy & Helicity

- **B**HPP
 - For a given distribution of a magnetic field, B, on the boundary of a domain, there is an <u>unique</u> decomposition of the magnetic field in potential and non-potential field.

$$\mathbf{B} = \mathbf{B}_{\mathbf{p}} + \mathbf{B}_{\mathbf{j}}$$

• Magnetic Energy is also simply divided

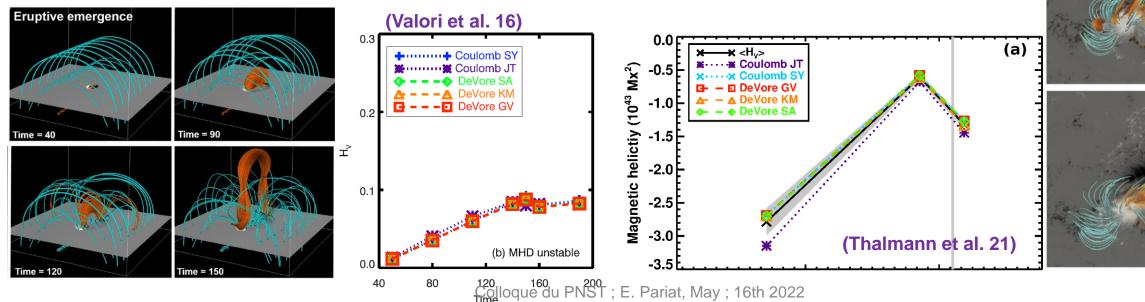
$$E_{mag} = E_p + E_{free}$$

• Relative magnetic helicity can be decomposed in 2 gauge-invariants quantities (Berger et al. 2003) : $H_j = \int_V A_j \cdot B_j \, dV$

$$\mathbf{H}_{\mathbf{v}} = \mathbf{H}_{\mathbf{p}j} + \mathbf{H}_{j} \qquad H_{\mathbf{p}j} = 2 \int_{\mathbf{v}} \mathbf{A}_{\mathbf{p}} \cdot \mathbf{B}_{j} \, \mathrm{d}\mathbf{v}$$

Б

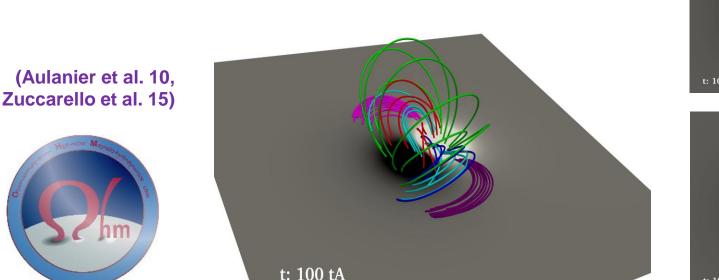
- $H_j = magnetic$ helicity of the current-carrying field B_j
- H_{pj} = volume-threading helicity, between potential and current-carrying fields

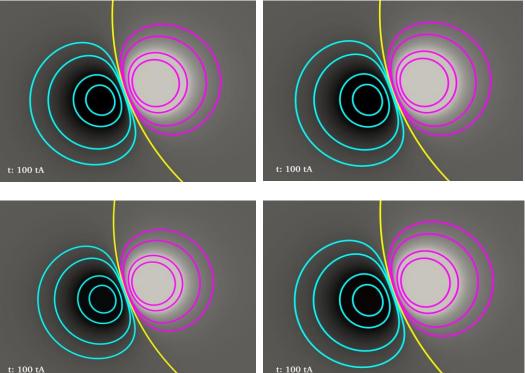

Helicity Eruptivity Index: H_i/H_v

Benchmarking of relative helicity estimation methods

- Benchmarking of measurment methods performed by ISSI team on "Helicity estimations in models and observations"
 - Valori et al. 16, Guo et al. 17, Thalman et al. 21, Pariat et al. in prep.
- Numerous tests: sensibility to resolution, twist, solenoidality, data types (semi-analytical, numerical, observational) e.g.
 - Flux emergence simulations (Leake et al. 13, 14)
 - NLFFF 3D coronal reconstruction (Schrijver et al. 08)

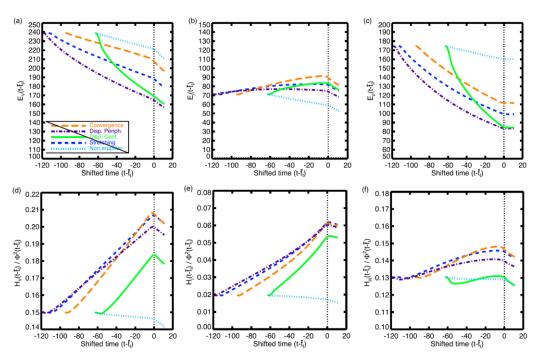
Methods perform very consistently when B sufficiently solenoidal

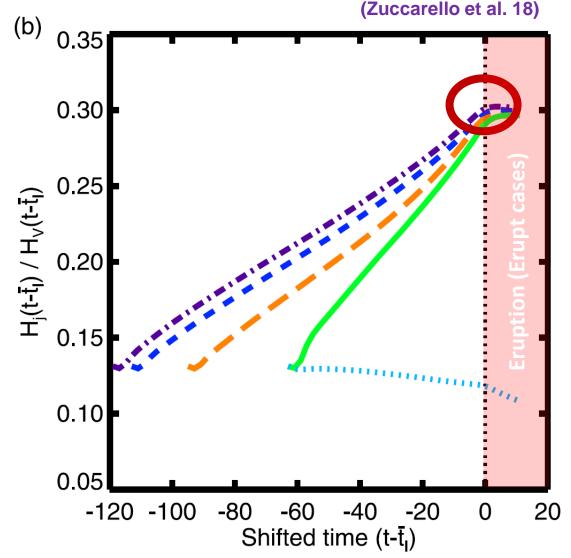



- Context : prediction of solar flare/eruption
- Magnetic helicitie
- Helicity eruptivity index : results from numerical simulations
- Helicity eruptivity index : results from observations
- Conclusion

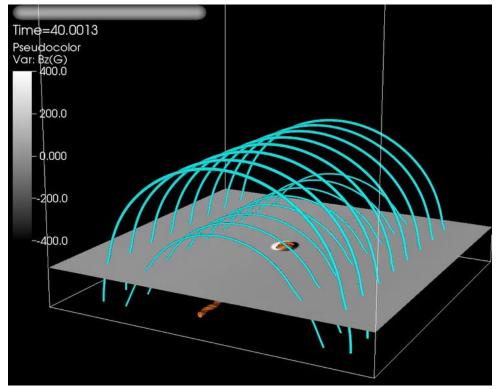
Line-tied 3D MHD parametric simulations

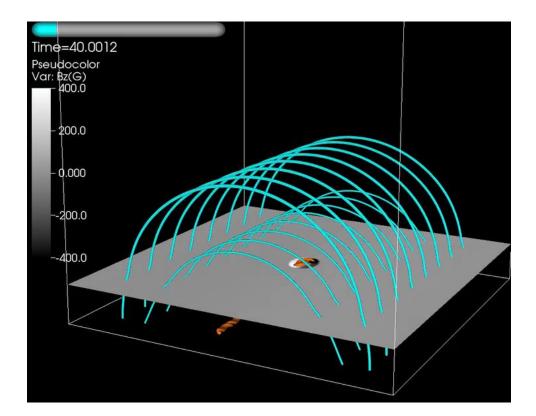
- Parametric line-tied boundary driven 3D MHD simulations of solar eruptions (Zuccarello et al. 15):
 - 3D visco-resitive MHD simulations; Ohm-MPI code (Aulanier et al. 10, Zuccarello et al. 16)
 - Initial potential/stable config. ; quasi-steadly injection of energy/helicity → eventual trigger of eruption
- 4 different line-tied boundary driving patterns with different: shear around the PIL & magnetic flux dispersion + 1 non-eruptive control case (diffusion)



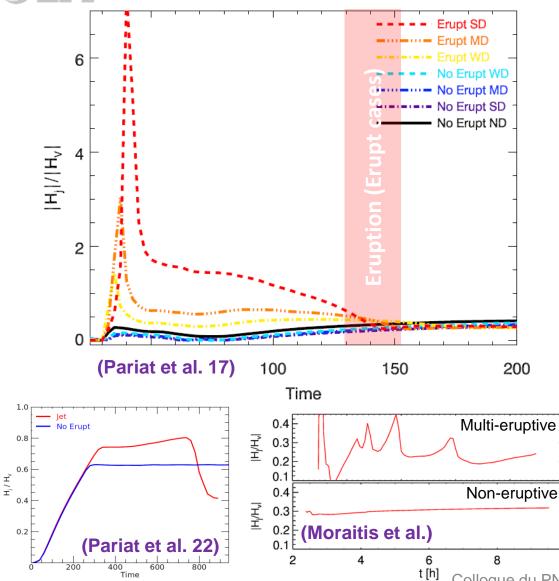


Helicity Eruptivity Index


- Despites different boundary drivers and t_{erupt}, eruptions are triggered when an Helicity Eruptivity Index reaches a threshold:
 - <4% dispersion (within measurement precision)
 - Unique quantity with such behavior



Parametric flux emergence simulations


- **B**HPP
 - 7 flux emergence simulations leading either to eruptive or non-eruptive dynamics (Leake et al. 2013, 2014)
 - Deterministically stable/instable: Stability of system given by initial conditions
 - No helicity instability threshold is expected
 - Is there an advance signature of eruptivity?

(Leake et al. 13, 14)

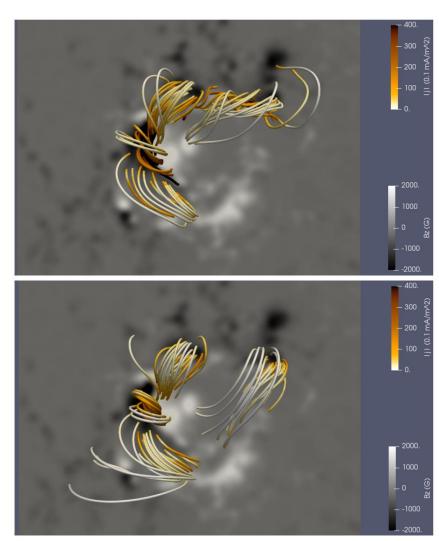
$|H_j|/|H_v|$: excellent eruptivity indicators

- $|H_j|/|H_v|$ appears as an excellent eruptivity predictor of these flux emergence simulation
 - Highest value for the eruptive simulations in the pre-eruptive phase
 - Eruptive and non-eruptive simulations have similar values in post-eruption phase

 Results now confirmed in several 3D MHD numerical experiments of active events

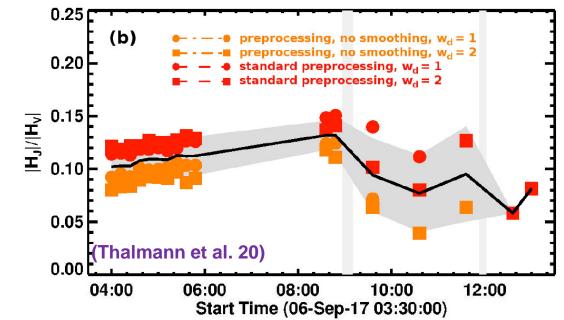
- Eruptions (Zuccarello et al. 18)
- Flux emergence (Pariat et al. 17, Moraitis et al. 14)
- Coronal jets (Linan et al. 18, Pariat et al. 22 in prep)
- 17 different simulations, using 3 different 3D MHD numerical codes
- 5 different mag. config. inducing 10 eruptive & 7 stable systems

• What about observations?


^{nj} Colloque du PNST ; E. Pariat, May ; 16th 2022

10

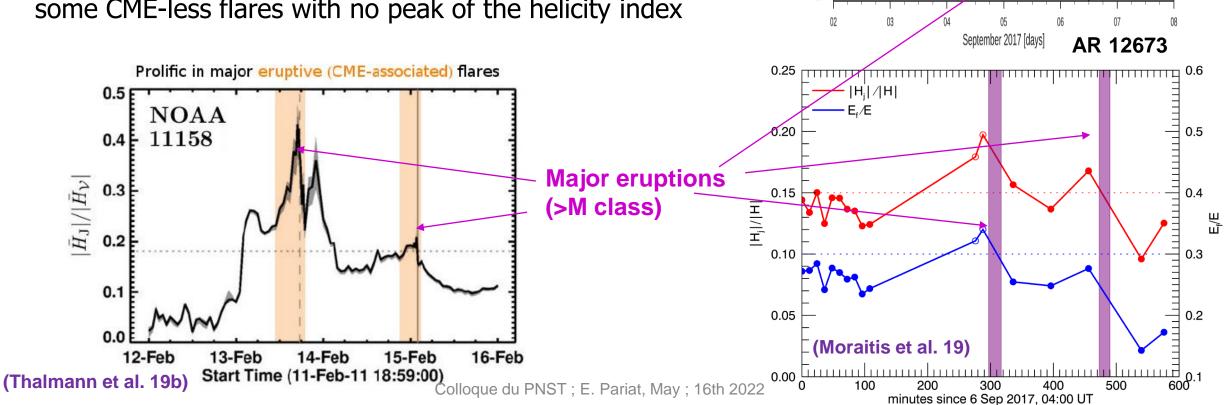
- Context : prediction of solar flare/eruption
- Magnetic helicitie
- Helicity eruptivity index : results from numerical simulations
- Helicity eruptivity index : results from observations
- Conclusion


Measuring magnetic helicity in observations

• Helicity eruptivity index estimations requires magnetic field extrapolation of the 3D coronal field.

- 3D coronal magnetic field reconstruction are complex
 - Requires information about J_z vs 180° ambiguity in obs.
 - numerous assumptions, model-dependent,
 - → No unique solutions

• > No absolute determination of the helicity content!



(Moraitis et al. 19)

Helicity and eruptive flares

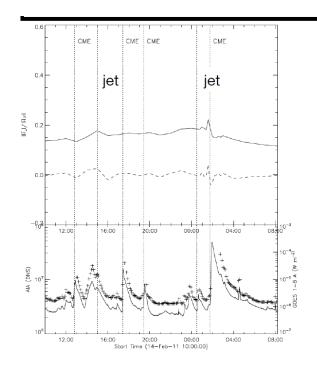
- e.g. Moraitis et al. 19, Thalmann et al. 19b, Price et al. 19
- However there is also: peaks of Hj/Hv without activity & some CME-less flares with no peak of the helicity index

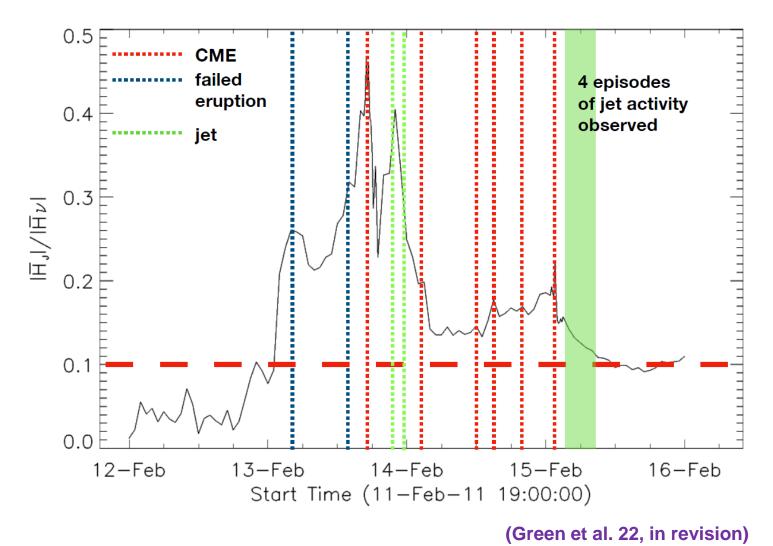
(Price et al. 19)

0.25

0,20

0,15

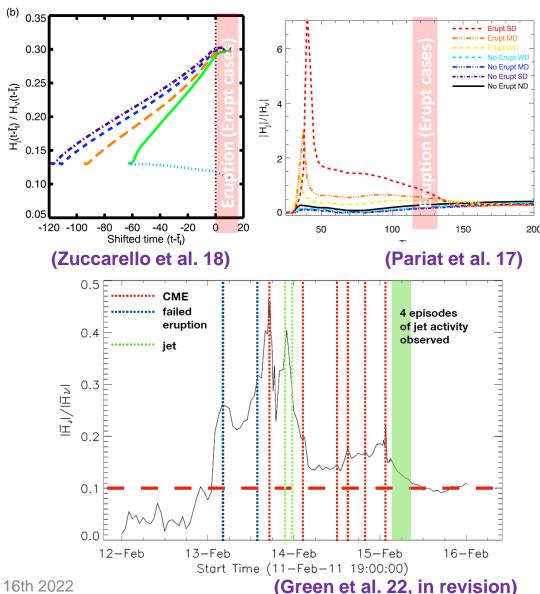

0,10


0.05

0,00

- Detailed observational studies confirm link between helicity eruptivity index and activity Green et al. in prep.
 - Still peaks of Hj/Hv without activity & some CME-less flares with no peak of the helicity index

Colloque du PNST ; E. Pariat, May ; 16th 2022



- Context : prediction of solar flare/eruption
- Magnetic helicitie
- Helicity eruptivity index : results from numerical simulations
- Helicity eruptivity index : results from observations
- Conclusion

Helicity & Eruptivity: conclusions

- The helicity-based eruptivity index, i.e. the ratio |Hj|/|Hv| is a promising marker of the eruptive state of solar magnetic systems
 - Clear discriminating role noted in numerical experiments of solar-like active
 - Preliminary observational results are compatible
- → needs to be fully validated against observational results:
 - statically significant
 - of a sufficiently good quality!
- Solar Orbiter/PHI shall help to provide the next generation of magnetic field measurements (resolution ; stereoscopy)

