

The coronal heating problem

Density and temperature in the solar atmosphere:

- → How can we explain the heating of the solar corona?
- Energy source: photospheric motion
- Energy is transported by the magnetic field, and deposited in the corona:
 - magnetohydrodynamic(MHD) waves,
 - o magnetic reconnection,
 - mixed mechanisms.

We still don't know which mechanism is predominant

Transverse waves are widely observed in the corona

- Propagating kink waves:
 - o In loops (e.g. Tomczyk et al. 2007; Tomczyk & McIntosh 2009; Thurgood et al. 2014)
 - o In open flux tubes (Morton et al. 2015)
- Standing kink waves:
 - Impulsively excited: decaying oscillations (e.g. Nakariakov et al. 1999;
 Van Doorsselaere et al. 2007)
- Continuously driven: decayless oscillations (e.g. Wang et al. 2012; Nisticò et al. 2013; Anfinogentov et al. 2013, 2015)

Karampelas & Van Doorsselaere (2018)

What are these transverse waves?

Standing kink waves lead to heating in simulations

→ Simulations with driver at the bottom of the corona (e.g. Karampelas et al. 2017, 2019a,b, Guo et al. 2019a, Afanasyev et al. 2019)

- → Reproduce observations
- → Lead to heating through the Kelvin-Helmholtz instability
- → Is it still true if the driver is in the chromosphere?

Transverse wave cut-off in the transition region

Analytically-predicted cut-off frequencies

- → Can transverse waves reach the corona?
- → Simulate propagation of kink waves in an open tube with chromosphere and TR

3D MHD numerical model

Magnetic flux tube in chromosphere, transition region and corona

- PLUTO MHD code (Mignone et al. 2012)
- Thermal conduction
 → modified conductivity below 0.25 MK to broaden the TR (Lionello et al. 2009)

Numerical model (3D): boundary conditions

Upper layer (z > 50 Mm)

Velocity rewrite layer → absorb waves

 \forall *t* rewrite velocity:

$$v(x, y, z) \leftarrow \alpha(z) v(x, y, z)$$

where $\alpha(z)$ varies linearly from 1 to 0.9995 between 50 Mm and 100 Mm.

Lower boundary (z = 0)

- Dipole-like driver (Pascoe et al. 2010)
 - → propagating kink wave

Results: wave amplitude decreases with frequency

Altitude [Mm]

Results: phase speed shows cut-off

- Measure **phase speed** as a function of altitude Compute the maximum cross-correlation between $v_x(z-\Delta z/2)$ and $v_x(z+\Delta z/2)$ to obtain time delay, and in turn phase difference.
- The inverse of the phase speed tells us whether a wave is propagating or not:

$$\frac{1}{v_p(z)} = \frac{\Delta \phi(z)}{\omega \Delta z}$$
 ~ 1/c_k propagating **→ no damping** standing evanescent **→ damping**

→ Transverse waves are cut-off through the transition region

Results: cut-off altitude matches analytical model

- Compute the **cut-off altitude** $z_c(\omega)$: Altitude at which c_k/v_p goes above threshold $t_r < 1$.
- Compare to analytical models:

Spruit (1981)

$$\omega_c^2 = \frac{g}{8H} \frac{1}{2\beta + 1}$$

Snow (2017, NAM)

$$\omega_c^2 = \frac{v_A^2}{4z^2}$$

Lopin & Nagorny (2017)

$$\omega_c^2 = \frac{c_{k0}^2}{4H_0H(z)} \left(\delta_B^2 \frac{dH(z)}{dz} + \frac{H^2(z)}{z^2} \right)$$

- → The cut-off frequency is best predicted by Lopin & Nagorny (2017)
- → High-frequency waves can reach the corona by tunnelling

Conclusions: kink waves cut-off

(Pelouze et al. 2022, in prep)

- → Transverse waves are cut-off in the transition region, as predicted by analytical models
- → Identified the analytical model that best predicts the cut-off frequency (Lopin & Nagorny 2017)
- → Cut-off waves can still reach the corona through tunnelling

Perspectives: heating by kink waves

Coronal loop with chromosphere and TR

