Kelvin-Helmholtz instability and magnetic reconnection at the Earth's magnetopause: 3D simulation based on satellite data

M. Faganello¹, M. Sisti, F. Califano and B. Lavraud

Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France

Colloque PNST 2022, 19/05/2022

Outline

Introduction

The magnetospheric environment KH as a large-scale (MHD) flute mode Type I Vortex Induced Reconnection Mid-latitude reconnection MMS observations & motivations

Setting-up simulations

A model for the magnetospheric flank High-latitude stabilization & magnetic rotation

3D "realistic" simulation results

KH and current sheet dynamics Reconnection dynamics and its latitude distribution *In-situ* and *remote* events: simulation Vs observations

Conclusions

Magnetospheric environment: Northward "quiet" periods

- Unexpected efficient transport between the solar wind and the magnetosphere
- Inferred $D_{eff} \simeq 10^9 m^2/s$
- Cross-field diffusivity (collisional or anomalous) too small

^aWing 06, Taylor 08 & Hasegawa 09 ^b Nakai 01 ^c Kavosi 15

Magnetospheric environment: Northward "quiet" periods

- Unexpected efficient transport between the solar wind and the magnetosphere
- ▶ Inferred $D_{eff} \simeq 10^9 m^2/s$
- Cross-field diffusivity (collisional or anomalous) too small
- ▶ Different mechanisms have been proposed →

- "Double lobe reconnection" can generate a Low Latitude Boundary Layer, but it is not sufficient.
- Kinetic Alfvén Waves at the magnetopause can strongly enhance cross field diffusion, but not ofte observed and sometimes excluded^b

^aWing 06, Taylor 08 & Hasegawa 09 ^b Nakai 01 ^c Kavosi 15

Magnetospheric environment: Northward "quiet" periods

- Unexpected efficient transport between the solar wind and the magnetosphere
- ▶ Inferred $D_{eff} \simeq 10^9 m^2/s$
- Cross-field diffusivity (collisional or anomalous) too small
- ▶ Different mechanisms have been proposed →

- "Double lobe reconnection" can generate a Low Latitude Boundary Layer, but it is not sufficient.^a
- Kinetic Alfvén Waves at the magnetopause can strongly enhance cross field diffusion, but not ofte observed and sometimes excluded^b
- 3) Kelvin-Helmholtz instability:
 - ► "Robust" phenomenon^c
 - ► A good **driver** for a **rich dynamics**

^aWing 06, Taylor 08 & Hasegawa 09 ^b Nakai 01 ^c Kavosi 15

KHI as a large-scale (MHD) flute mode

- ► KHI is the instability of a sheared velocity configuration
- ▶ Velocity shear half-width $a \sim \text{several } d_i \rightarrow \text{KHI develops as a large-scale } (\sim \text{tenths of } d_i), \text{ nearly magnetohydrodynamic mode}$
- $\vec{k} \cdot \Delta \vec{V}$ provides the energy source, while $\vec{k} \cdot \vec{B}$ is the sink (magnetic tension is stabilizing)
- For magnetospheric parameters, KHI develops as a flute mode, with $\vec{k} \cdot \vec{B} \simeq 0$

Without magnetic rotation $\vec{k} \cdot \vec{B} = 0$ everywhere.

With magnetic rotation $\vec{k} \cdot \vec{B} = 0$ where $\partial_x V$ is max (at magnetopause)

Current pinching: Vortex Induced Reconnection

- ∂_x V_{plane} > ∂_x V_{A,plane} ⇒ KHI pinches the original current sheet and force reconnection to occur
 → Type I Vortex Induced Reconnection.
- ➤ VIR creates field lines crossing the original frontier between the magnetospheric and SW plasmas.
- ➤ 3D kinetic simulations show the streaming of particles along reconnected lines → formation of a mixing layer^a.
- Effective $D_{eff} = O(10^9 m^2/s)$ or **even** higher^b.

^aNakamura JGR 13; ^bNakamura Nat 17 Bottom figures from Nakamura JGR 11

Current creation by high-latitude stabilization

Vortices create the conditions for reconnection even if, at low-latitude, there is no magnetic rotation (no initial current)

Current creation by high-latitude stabilization

- Vortices create the conditions for reconnection even if, at low-latitude, there is no magnetic rotation (no initial current)
- ► The equatorial region is unstable since:
 - velocity shear exists
 - reduced magnetic tension
- ► High latitudes
 - $\rightarrow \mathsf{complex}\ \mathsf{configuration}$
 - ightarrow total stabilization

Current sheets at mid-latitudes (resistive Hall-MHD sim.)

- **Low-latitude** region → **vortices**
- $\blacktriangleright \ \ \text{High-latitude} \ \ \text{regions} \rightarrow \text{stable}$

Current sheets at mid-latitudes (resistive Hall-MHD sim.)

- **▶ Low-latitude** region → **vortices**
- ► High-latitude regions → stable
- Differential advection for field lines
 - at $v_{\it Solar_Wind}$ or $v_{\it Magnetosphere}$ at high latitudes
 - at $v_{\it phase} \simeq (v_{\it SW} + v_{\it Msph})/2$ at low latitud
- ⇒ Arched solar wind & magnetospheric field lines
- **→ Mid-latitude current sheets**
- → Favorable conditions for reconnection to occur

Current sheets at mid-latitudes (resistive Hall-MHD sim.)

- **▶ Low-latitude** region → **vortices**
- ► High-latitude regions → stable
- Differential advection for field lines
 - at $v_{\it Solar_Wind}$ or $v_{\it Magnetosphere}$ at high latitudes
 - at $v_{\it phase} \simeq (v_{\it SW} + v_{\it Msph})/2$ at low latitud
- ⇒ Arched solar wind & magnetospheric field lines
- **→ Mid-latitude current sheets**
- → Favorable conditions for reconnection to occur

Mid-latitude reconnection

- Reconnection occurs in both hemispheres
- ⇒ Creates double reconnected lines
 - ► They connect
 N pole → red arm → N pole

Flux tubes "closed" on the Earth populated by solar-wind particles

("Opened" flux tubes too.)

^aFaganello EPL 2012; ^b Johnson JGR 09

Mid-latitude reconnection

Reconnection occurs in **both** hemispheres

Creates double reconnected lines

They connect N pole \rightarrow red arm \rightarrow N pole

Flux tubes "closed" on the Earth populated by solar-wind particles

("Opened" flux tubes too.)

⇒ Solar wind particles enter the magnetosphere

Effective a $D_{eff} \simeq 10^{9} m^{2}/s$

Specific entropy increases^b

^aFaganello EPL 2012: ^b Johnson JGR 09

Motivations

- Signatures of VIR has been measured by satellites, close to the equatorial plane¹.
- Signatures of Mid-latitude reconnection have been found too²
- On September 8th 2015, MMS detected signatures of both VIR and Mid-latitude reconnection³
- It observed an asymmetric distribution of "remote" reconnection events, with more events southern of the satellites³
- We want to understand the role of the two mechanism, their competition/cooperation in determining the magnetic evolution and the transport properties of the SW/magnetosphere frontier

A model for the magnetospheric flank: 2D equilibrium with translation symmetry along the flow direction (y-direction)

- ▶ Ideal MHD equations & adiabatic closure
- ▶ 2D (x,z) equilibrium configuration:

$$\vec{B} = B_y \hat{e}_y + \nabla \psi \times \hat{e}_y , \quad \psi = \psi(x, z)$$

► Actually a distorted 1D equilibrium configuration:

$$B_y = B_y(\psi)$$
, $V = V_y(\psi)\hat{e}_y$, $\rho = \rho(\psi)$, $p = p(\psi)$

► Simplified Grad-Shafranov equation:

$$abla^2 \psi = -4\pi \frac{d\Pi}{d\psi} \; , \quad \Pi = \Pi(\psi) = p + \frac{B_y^2}{8\pi}$$

- ▶ Π uniformity \rightarrow **Laplace equation**: $\nabla^2 \psi = 0$
- A suitable solution: $\psi(x,z) = 1/2 \left[(1+A)x + (1-A)L_z/2\pi \sinh(2\pi x/L_z) \cos(2\pi z/L_z) \right]$

High-latitude stabilization

High-latitude stabilization

High-latitude stabilization & magnetic rotation

High-latitude stabilization & magnetic rotation

- $\blacktriangleright \ B_{eq,y} = B_{\parallel \mathit{flow}}(1 + \tanh(\psi/\mathit{a}))$
- → Magnetic rotation
- ► Magnetic rotation & High-latitude stabilization
- ⇒ VIR and Mid-latitude reconnection, both at play.
- B_{||flow|} breaks the N-S symmetry is broken, for KH vortices and reconnection too^a.

^aFadanelli JGR 18

Data-based parameters for Hall-MHD simulation

- $ightharpoonup \Delta V_{eq} \simeq 350 Km/s$
- $ightharpoonup B_z \simeq 67 nT$
- $ightharpoonup B_{flow} \simeq -20nT$
- $n \sim 5.7 cm^{-3} \longrightarrow 20.1 cm^{-3}$
- $ightharpoonup T_{th} \sim 2800 eV \longrightarrow 200 eV$
- ▶ Shear half-width $a \simeq 900 Km$ so that $\lambda_{KH} \sim 12000 Km$
- $L_y = 2\lambda_{KH}$ (two vortices in the box); ny = 512
- $L_z = 8\lambda_{KH} \sim 10^5 Km \text{ i.e. } \pm 45^{\circ} \text{ ; } nz = 512$
- $\blacktriangleright \ \ L_{\rm x} = 2.4 \lambda_{\rm KH} \ ; \ {\it nx} = 900 \qquad \tau_{\rm res,eq} = {\it a}^2/\eta \simeq 20 \ t_{\it max,sim}$
- Periodic boundary conditions (BC) along y z directions.
- ▶ BC along x-direction based on MHD characteristics:
 - Transparent boundaries Sustains the 2D equilibrium

KH and current dynamics (resistive Hall-MHD simulation)

- **Oblique** \vec{k} , with $\vec{k} \cdot \vec{B}|_{magnetopause} \simeq 0$
- High-latitude stabilization
- Asymmetric evolution
- Folded magnetopause $(\psi = 0 \text{ isosurface})$

Differential advection & N-S asymmetry

- As soon as field lines are caught into the vortices, field lines are advectect differently at low/high-latitudes
- As a consequence magnetic rotation is enahanced in one hemisphere (the southern one for B_{||flow} < 0) while it is lowered in the opposite one.
- KH vortices shift where rotation lowers (smaller stabilization)

^aVernisse JGR 16, Vernisse JGR 20

Differential advection & N-S asymmetry

- As soon as field lines are caught into the vortices, field lines are advectect differently at low/high-latitudes
- As a consequence magnetic rotation is enahanced in one hemisphere (the southern one for B_{||flow} < 0) while it is lowered in the opposite one.
- KH vortices shift where rotation lowers (smaller stabilization)
- Reconnection occurs as both VIR and Mid-latitude one but prefers the hemisphere where rotation (and J) rises.
- We expect more reconnection events in the southern hemisphere, as observed by MMS on 08/09/2015^a.

^aVernisse JGR 16, Vernisse JGR 20

How to find reconnected lines in 3D, complex simulations?

- ψ and \vec{B} are advected independently:
 - ψ follows an **ideal evolution**
 - \vec{B} the **true** resistive Hall-MHD one and **reconnects**.
- lacktriangle A jump of ψ along a line indicates reconnection.
- Current sheets, and reconnection, are at the magnetopause.
- ▶ Define a line as "reconnected" if $|\Delta\psi|_{along\ line} > a/2$ across the magnetopause ($\psi = 0$ isosurface).

How to find reconnected lines in 3D, complex simulations?

- ψ and \vec{B} are advected independently:
 - ψ follows an **ideal evolution**
 - \vec{B} the **true** resistive Hall-MHD one and **reconnects**.
- lacktriangle A jump of ψ along a line indicates reconnection.
- Current sheets, and reconnection, are at the magnetopause.
- ▶ Define a line as "reconnected" if $|\Delta \psi|_{along\ line} > a/2$ across the magnetopause $(\psi = 0 \text{ isosurface})$.

- ightharpoonup 22500 lines integrated at each time \longrightarrow statistical analysis
- ▶ Define **reconnection event** as a **crossing** of the **magnetopause** by a reconnected line

Reconnection dynamics and its latitude distribution

- **Early nonlinear evolution** $(t = 500\Omega_{ci}^{-1})$ and $600\Omega_{ci}^{-1})$:
 - The original current sheet is compressed around the equators \rightarrow VIR
 - This main current sheet gradually shifts southward as well as VIR events
 - A second current peak arises in the northern hemisphere
 - \rightarrow mid-latitude reconnection.

Reconnection dynamics and its latitude distribution

- **Early nonlinear evolution** $(t = 500\Omega_{ci}^{-1})$ and $600\Omega_{ci}^{-1}$:
 - The original current sheet is compressed around the equators \rightarrow VIR
 - This main current sheet gradually shifts southward as well as VIR events
 - A second current peak arises in the northern hemisphere
 → mid-latitude reconnection.
- Late nonlinear evolution (t = 725): secondary small-scale KH vortices grows in between the two main current peaks. Reconnection is forced there and a wider distribution is formed.

Number of *in-situ* and *remote* events

Defined with respect to a virtual satellite at the equators.

Time interval	Southern h.	In-situ	Northern h.
501-525	35	81	2
526-550	377	201	7
551-575	677	321	327
576-600	730	268	590
601-625	544	145	686
626-650	694	247	953
651-675	488	356	1346
676-700	147	328	747
701-725	-	120	757

- ► Early nonlinear phase, as in the MMS event¹: more remote events in the southern hemisphere
- We expect more remote events in the northern hemisphere if satellites would be further downstream along the flank

¹ Vernisse IGR 20

Topology chart in the equatorial plane: satellite comparison

- ▶ Black circles: crossing points of once-reconnected lines → expected in-situ signatures or remote signatures coming from the south.
- ▶ Purple circles: crossing points of double-reconnected lines → also remote signatures coming from the north.
- In very good agreement with particle distribution functions observed by MMS¹.

¹Eriksson Front 2021

Conclusions

- ► VIR and mid-latitude reconnection cohexist when an initial magnetic rotation is present.
- ► They lead to a **complex magnetic evolution** with an **asymmetric distribution** of **reconnection** events¹.
- ► The predicted locations for magnetic reconnection are in good agreement with reconnection signatures observed by MMS².
- ► Even if the system evolves asymmetrically, the number of double-reconnected lines reaches 40% of reconnected lines¹ and could explain the specific entropy incresing that is observed across the magnetopause³.
- ► The effective diffusion coefficient associated to reconnection is large enough for explaining the observed transport¹

¹Sisti GRL 19, Faganello PPCF 22; ²Vernisse JGR 16, Eriksson Front 21; ³Johnson JGR 09 → ⟨ ■ → | ■ → ○ へ ○

Thank you for your attention.

matteo.faganello@univ-amu.fr

Once/double reconnected lines and effective diffusion

- # of reconnected lines growth with time
- # of double-reconnected lines reaches 70% of # of once-reconnected.
- ψ measures the distance from the perturbed magnetopause (at $\psi=0$).
- \Rightarrow < $\Delta \psi^2$ > over all lines measures the effective magnetic diffusion due to reconnection.
 - Effective $D_{eff} \approx 10^{10} m^2/s$:)))

A minimal plasma model: resistive Hall-MHD

Continuity equation

$$\partial n/\partial t + \nabla \cdot (n\vec{U}) = 0$$

Momentum equation

$$\partial (n\vec{U})/\partial t + \nabla \cdot [(n\vec{U}\vec{U}) + (P \overleftrightarrow{I} - \vec{B}\vec{B})] = 0 \; ; \; P = P_i + P_e + |B|^2/2$$

Adiabatic closures

$$\partial (nS_{i,e})/\partial t + \nabla \cdot (nS_{i,e}u_{i,e}) = 0$$
 ; $S_{i,e} = P_{i,e}n^{-5/3}$

Faraday & current equations

$$\partial \vec{B}/\partial t = -\nabla \times \vec{E}$$
 ; $\vec{J} = \nabla \times \vec{B}$

Generalized Ohm's law

$$\vec{E} = \underbrace{-\vec{U} \times \vec{B} + \vec{J}/n \times \vec{B}}_{-\vec{U}_e \times \vec{B}} - \frac{1}{n} \nabla P_e + \eta \vec{J}$$

Boundary conditions

MHD characteristic decomposition at the x-boundaries

$$(L_a^{\pm}, L_s^{\pm}, L_f^{\pm}, L_0) \leftrightarrow (\rho, T, v, B_y, B_z)$$
$$\partial/\partial t (\rho, T, v, B_y, B_z) = F(L_a^{\pm}, L_s^{\pm}, L_f^{\pm}, L_0)$$
$$(L_a^{\pm}, L_s^{\pm}, L_f^{\pm}, L_0) = G(a, s, f, \rho, T, v, B_y, B_z, \partial_x)$$

- ► Non-reflective boundary conditions (left boundary) and equilibrium sustainment:^a
 - $\rightarrow L_{0.a.s.f}^{\pm} = L_{0.a.s.f}^{\pm}|_{internal\ points}$ for outgoing waves
 - $\leftarrow \ \textit{L}_{0,a,s,f}^{\pm} = \textit{L}_{0,a,s,f}^{\pm}|_{\textit{equilibrium}} \qquad \text{ for incoming waves}$

^aFaganello NJP 2009

Late nonlinear evolution

