shadow=true

Magnetic Reconnection drives sub-ion turbulence: A Coarse Graining Approach

Davide Manzini^{1,2}, Prof. Fouad Sahraoui¹, Prof. Francesco Califano²

¹Laboratoire de Physique des Plasmas, École Polytechnique, France ²Dipartimento di Fisica E.Fermi, Universitá di Pisa, Italia

Colloque du PNST, Marseille, 16-20 May 2022

- ► Turbulence in the Solar Wind
- ▶ From a global to a local Turbulence: The Coarse Graining approach

[D. Manzini et al., submitted (2022a)]

► The Coarse Graining in practice: Magnetic Reconnection

[D. Manzini et al., submitted (2022b)]

Why Turbulence?

"Turbulence is the most important unsolved problem of classical physics."

Richard Feynman

Figure: 50 days running average of the plasma temperature from Voyager 2.

Figure: A magnetic energy spectrum measured in the solar wind. [F. Sahraoui *et al.* RMPP 2019]

Classical Theory of Hydrodynamic turbulence

Nonlinear interactions transfer energy from large to small scales at rate ε . Kolmogorov 4/5 law:

- Statistical homogeneity
- Existance of the inertial range: Energy input scale \ll Dissipation scale

Classical Theory of Hydrodynamic turbulence

Nonlinear interactions transfer energy from large to small scales at rate ε . Kolmogorov 4/5 law:

- Statistical homogeneity
- Existance of the inertial range: Energy input scale \ll Dissipation scale

When applying to Plasma Physics:

- Statistical description: No local (in space) description
- Dissipation can occur at all scales (e.g. Landau Damping)

The need of Spatial Locality

Not all plasma regions are equal!

- Classical Kolmogorov Theory: Cascade rate $\epsilon \longrightarrow 1$ Value
- In this work Local Coarse Graining: Cascade rate $\pi_{\ell}(\mathbf{x}) \longrightarrow$ Spatial dependance

From global to local cascade: The CG Approach

Normalized filtering function $G_{\ell}(\mathbf{x})$ with variance $\sim \ell^2$. e.g $G_{\ell}(\mathbf{x}) = \frac{e^{-|\mathbf{x}|^2/(2\ell^2)}}{\sqrt{2\pi\ell^2}}$ The coarse-graining operation is a local average of the field:

$$ar{\mathbf{u}}_\ell = \mathbf{u} * G_\ell = \int d^3 x' \mathbf{u}(\mathbf{x}') G_\ell(\mathbf{x} - \mathbf{x}')$$

The CG approach in Fourier space

$$ar{\mathbf{u}}_\ell = \mathbf{u} * \mathcal{G}_\ell \longrightarrow \widehat{f u} = \hat{f u} \cdot \hat{\mathcal{G}}_\ell \propto \hat{f u}(m k) e^{-2\pi\ell^2 |m k|^2}$$

exponential cut-off at $k=1/\ell$

For each choice of ℓ we divide the range of scales in

- the large scales (resolved)
- The small scales (un-resolved)

Introducing: $\mathbf{b} = \mathbf{B}/\sqrt{\mu_0\rho_0}$ $\mathbf{j} = \nabla \times \mathbf{b}$ $P = p + |\mathbf{b}|^2/2$ we can write equations for the large scale fields $\mathbf{\bar{u}}_{\ell}, \mathbf{\bar{b}}_{\ell} \dots$

The CG incompressible HMHD equations

The equations for the CG fields at a scale ℓ read:

$$\begin{aligned} \partial_t \bar{\mathbf{u}} &= -(\bar{\mathbf{u}} \cdot \nabla) \bar{\mathbf{u}} + (\bar{\mathbf{b}} \cdot \nabla) \bar{\mathbf{b}} - \nabla \bar{P} + \nabla \cdot \boldsymbol{\tau} + \nu \nabla^2 \bar{\mathbf{u}} \\ \partial_t \bar{\mathbf{b}} &= \nabla \times (\bar{\mathbf{u}} \times \bar{\mathbf{b}}) - d_i \nabla \times (\bar{\boldsymbol{j}} \times \bar{\mathbf{b}}) + \nabla \times \boldsymbol{\mathcal{E}} + \eta \nabla^2 \bar{\mathbf{b}} \\ \nabla \cdot \bar{\mathbf{b}} &= 0 \quad \nabla \cdot \bar{\mathbf{u}} = 0 \end{aligned}$$
(1)

Equations describe the large scale ($|{m k}| \lesssim 1/\ell$) fields.

The CG incompressible HMHD equations

The equations for the CG fields at a scale ℓ read:

$$\begin{aligned} \partial_t \bar{\mathbf{u}} &= -(\bar{\mathbf{u}} \cdot \nabla) \bar{\mathbf{u}} + (\bar{\mathbf{b}} \cdot \nabla) \bar{\mathbf{b}} - \nabla \bar{P} + \nabla \cdot \boldsymbol{\tau} + \nu \nabla^2 \bar{\mathbf{u}} \\ \partial_t \bar{\mathbf{b}} &= \nabla \times (\bar{\mathbf{u}} \times \bar{\mathbf{b}}) - d_i \nabla \times (\bar{\boldsymbol{j}} \times \bar{\mathbf{b}}) + \nabla \times \boldsymbol{\mathcal{E}} + \eta \nabla^2 \bar{\mathbf{b}} \\ \nabla \cdot \bar{\mathbf{b}} &= 0 \quad \nabla \cdot \bar{\mathbf{u}} = 0 \end{aligned}$$
(1)

Equations describe the large scale ($|\mathbf{k}| \lesssim 1/\ell$) fields.

Same shape as non filtered equations with the influence of the non resolved terms (small scales, $|\pmb{k}|\gtrsim 1/\ell$):

$$oldsymbol{ au}_{ij} = \overline{u_i u_j} - oldsymbol{ar{u}}_i oldsymbol{ar{u}}_j - (\overline{b_i b_j} - oldsymbol{ar{b}}_i oldsymbol{ar{b}}_j) \qquad oldsymbol{\mathcal{E}} = \overline{\mathbf{u} imes \mathbf{b}} - oldsymbol{ar{u}} imes oldsymbol{ar{b}} - oldsymbol{d}_i (oldsymbol{ar{j}} imes oldsymbol{ar{b}} - oldsymbol{ar{j}} imes oldsymbol{ar{b}})$$

CG Energy equations

The Goal:

Write equations for the large scale energy and study the cross-scale energy flux.

$$\partial_t \left(\frac{|\bar{\mathbf{u}}_{\ell}|^2 + |\bar{\mathbf{b}}_{\ell}|^2}{2} \right) = -\nabla \cdot \mathcal{J}_{\ell} - \pi_{\ell}(\mathbf{x}) - \nu |\bar{\mathbf{w}}_{\ell}|^2 - \eta |\bar{\mathbf{j}}_{\ell}|^2$$
(2)

- ▶ Spatiall advection by the term $\nabla \cdot \mathcal{J}_{\ell}$
- Large scale dissipation $-\nu |\bar{w_{\ell}}|^2 \eta |\bar{j_{\ell}}|^2$

• $\pi_{\ell} = -\nabla \bar{\mathbf{u}}_{\ell} : \tau_{\ell} - \bar{\mathbf{j}}_{\ell} \cdot \boldsymbol{\mathcal{E}}_{\ell}$ is the amount of energy (at position \mathbf{x}) going from large to small scales

Localized (in space) energy transfer: $\pi_{\ell}(\mathbf{x})$ is the transfer across scale ℓ at position \mathbf{x} .

 $\pi_\ell({m x}) >$ 0: Direct cascade, $\pi_\ell({m x}) <$ 0: Inverse cascade.

 $\pi_\ell(\pmb{x})$ function of both the scale ℓ and the position \pmb{x}

- Fixed $\ell \longrightarrow$ Which spatial regions are involved in energy transfer at fixed scale $\ell.$
- Fixed $\textbf{x} \longrightarrow$ At what scales the non-linear transfer is effective.

Application to Mangetic Reconnection

CG application to MR: Spatial features

• cascade rate at $\ell = d_i/10$ shows both positive and negative values

Localized (positive) cascade rate at reconnecting location

X-points and IDR involved in the creation of small scale turbuent spectrum

MR in HVM simulations: Scale features

1D cut across reconnecting CS

- turbulent energy cascade starts at l ~ di
- spatial extension comparable with EDR size

Magnetosheath Reconnection - MMS

Conclusions

- ▶ The Coarse Graining approach as a tool to describe localized energy cascade
- Magnetic reconnection is highly involved cross-scale energy transfer
- Magnetic reconnection drives sub-ion scale turbulence

[Manzini et al., submitted (2022b)]

Conclusions

- ▶ The Coarse Graining approach as a tool to describe localized energy cascade
- Magnetic reconnection is highly involved cross-scale energy transfer
- Magnetic reconnection drives sub-ion scale turbulence

[Manzini et al., submitted (2022b)]

Thanks for the attention!

