Global 3D Hybrid simulations of the Super-Critical Bow-Shock behavior upon a Quasi-Perpendicular interaction with the Interplanetary Magnetic Field

Laboratoire de Physique des Plasmas

Emanuele Cazzola, Dominique Fontaine, Philippe Savoini

Laboratoire de Physique des Plasmas (LPP), CNRS, Observatoire de Paris, Sorbonne Université, Université Paris-Saclay, École Polytechnique, Institut Polytechnique de Paris

Programme National Soleil Terre – PNST – 2022, May 17

Bow-Shock Dynamics in a Quasi-Perpendicular Configuration What happens at (relatively) high Alfvénic Mach number?

Movie: 3D BS cross-section thru the ecliptic plane – $\theta_{\rm Bn}$ being the angle between B and normal direction to the Bow-Shock surface at the nose

Apparition of waves propagating along the curved Bow-Shock

Bow-Shock Surface Rippling

Rippled structures:

- Under what conditions do they appear ?
- What direction do they propagate to ?
- How fast do they propagate ?
- Where are they originated from ?
- What is wavelength and frequency?
- ► How does their global view look like ?

Bow-Shock Surface Rippling

Have they been observed in simulations and with satellites?

Observed with satellites crossing

- **→** With MMS and CLUSTER :
 - Johlander+ 2016 (cf. M_Δ ~ 6.2)
 - Madanian+ 2021 (cf. M_△ ~ 27)
 - ► Moullard+ 2006 (*cf.* M_Δ ~ 11)
 - ightharpoonup Lobzin+ 2007 (cf. M_a ~ 5)

Limited to local view

Planar shocks simulations and possible origins explanations

- ► Normal-aligned processes :
 - Lembege & Savoini 1992
- Surface-aligned processes :
 - Hellinger+ 1996
 - Hellinger & Mangeney 1997
 - Krasnoselskikh+ 2002
 - Lembège+ 2009
- Alfvenic Ion Cyclotron Instability or Mirror Instability
 - Tanaka+1983
 - Winske & Quest 1988
- > Reflected ions gyrating dynamics instability
 - Burgess & Scholer 2007
- ► Kinetic-based MHD surface wave
 - Lowe & Burgess 2003

Limited to planar shocks front (shock curvature excluded)

Characterizing the Bow-Shock Surface Rippling in a 3D curved scenario with hybrid simulations

Unfortunately, observations are *local* and past simulations were *approximated to* 2D planar shocks (local point of view) ... we are missing the 3D macroscopic global view of the phenomenon on a curved shock surface!

3D multi-species dynamic-BC ready hybrid code LatHyS (Modolo+, 2005):

X Rescaled problem

Technique validated in Omidi+, 2004

X Bow-Shock / Magnetosheath / Magnetopauste system selfconsistently generated

Qualitatively validated with models (e.g. Jerab+, 2005)

X Solar Wind values steadily injected from left boundary

x Periodic BC elsewhere

bow shock magnetopause magnetosphere solar wind magnetotail

Periodic BC

Periodic BC

Sketch adapted from study.com

Characterizing the Bow-Shock Surface Rippling in a 3D curved scenario with hybrid simulations

To infer the ripples dynamics we can identify a nominal surface intercepting the ripples at all times :

- ► Models from the literature (from observations and MHD simulations)
 - > Too inaccurate to catch the dynamics everywhere / all the time!
 - > We can do something more ... ad-hoc

Detecting, Identifying and Fitting a BS Nominal Surface

BIPP

By exploiting the potential of structured-arrays data outputs from simulations ...

 $x(y,z) = a_{2.0}y^2 + a_{1.1}yz + a_{0.2}z^2 + a_{1.0}y + a_{0.1}z + a_{0.0}$

Figure: 2D cross-section of 3D outputs

2D Cross-Section Analysis

Ripples propagates from central region outward with a nearly constant velocity

This velocity does not change in time

Nearly symmetric propagation over the two wings

Planar Analysis

By taking the FFT ...

Phase speed of ~ 8 $V_{\Delta} \sim 592$ km.s-1

Broad spectrum of wavelengths ($\geq 8 d_i \sim 984 \text{ km}$) and periods ($\geq 0.3 \text{ s}$), limited to resolution cut-off

3D Analysis

X Ripples are indeed single elongated structures extending North-South and propagating from the nose outwards

X Quasi-Perpendicular to Quasi-Parallel transition not affecting the overall dynamics

X The propagation speed does not change with latitude

x Propagation along the IMF orientation

What happens if we switch the IMF direction?

Modulations direction of propagation is parallel to the IMF – Solar Wind direction/velocity not changed

So far we were in a (relatively) high M_A supercritical conditions:

- **Kinetic effects dominant**
- \triangleright Are ripples present for lower M_{\triangle} ?

Bow-Shock Dynamics in a Quasi-Perpendicular Configuration

What happens at low Alfvénic Mach number?

Movies: 3D BS cross-section thru the ecliptic plane – $\theta_{\rm Bn}$ being the angle between B and local normal direction at the nose

What happens for a lower M_{Δ} ?

nose region zoom-in

10

15

10

-5

 -10°

-10

Possible Kinetic Ripples Origins

As the Bow-Shock nose is the first impact point and the ripples appear to be propagating from this region ...

... let's check the ions velocity distribution in the local-B frame across this point!

Possible Kinetic Ripples Origins

Possible Kinetic Ripples Origins

phase space (as already observed by Hellinger & Travnicek 2002)

Summary

We need realistic 3D hybrid simulations to gain better insights into the global ripples dynamics, finding that :

- Ripples are:
 - elongated structures extending perpendicular to the IMF orientation
 - propagate from the nose region outwards along the flanks with a constant – in space and time - speed along the IMF orientation
 - Feature a broad band of wavelengths and periods ($\lambda \ge$ 950 km, T \ge 0.3 s)
- Shock-front reformation occurring at the nose
 - causing a localized inward-outward Bow-Shock oscillation
 - Acting as a local perturbation that later propagates as a surface wave

Outlook

Remaining questions to address:

- ➤ Based on what mechanism do ripples propagate ?
- We have also noticed that ripples propagate
- ~ 15-18 % faster than the local Solar Wind tangential velocity ... What can explain such discrepancy?
- What are other possible kinetic mechanisms to explain their origins and their behavior?

Thank you ... Questions?

Laboratoire de Physique des Plasmas