

Colloque PNST Marseille 16-20 mai 2022

Caractéristiques et variabilités des champs électriques et magnétiques des éclairs typiques et extrêmes (superbolts) mesurés depuis l'espace par les sondes Van Allen

T. Farges¹, J.-F. Ripoll¹, D. M. Malaspina^{2,3}, E. H. Lay⁴, G. S. Cunningham⁴, G. B. Hospodarsky⁵, C. A. Kletzing⁵, and J. R. Wygant⁶

DE LA RECHERCHE À L'INDUSTRIE

1 CEA, DAM, DIF, F-91297 Arpajon, France,

2 Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO, USA

3 Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA

- 4 Los Alamos National Laboratory, Los Alamos, NM, USA
- 5 Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
- 6 School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA

Cea Context

Cloud-to-ground lightning flashes strongly emit electromagnetic radiation in the very low frequency (VLF) band.

This radiation propagates with low attenuation inside the Earth-ionosphere waveguide for thousands of kilometers (up to 18 000 km).

These lightning-generated waves (**LGW**) can escape from the waveguide to the magnetosphere in ducted modes along magnetic field lines or in unducted modes.

Top of ionosphere

~1000 km

Bottom of

ionosphere ~100 km

precipitating electrons

Earth

Description of the data used in the study

Instrument of interest in this study:

Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) (Kletzing et al. 2013)

Acquisition mode:

- Survey (automatic spectra on 0.5s data acquired • every 6 s).
- Burst (high frequency): triggered (6s of data at full • resolution)

RBSP database:

- Survey spectra for L in [1.1, 3] from 2012 to 2019 and both RBSP:
 - 12.8M for magnetic field from 10/1/2012 to 05/31/2018 (RBSP-B) and 06/30/2018 (RBSP-A)
 - \succ 11.8M for electric field from 10/1/2012 to 06/30/2019 (RBSP-B) and 06/30/2016 (RBSP-A)

24.6 millions of B or E values

Van Allen Probes (RBSP) mission

Two identical spacecraft Start of the mission: 08/30/2012 End of mission: 07/19/2019 (Probe B) 10/18/2019 (Probe A) Perigee altitude: 618 km (L=1,09) Apogee altitude: 30,414 km (L=5,77) Inclination: 10.2° (equatorial orbit) Period: 537.1 minutes (2,7 orbits / day)

Farges et al.

Survey data and LGW selection criteria

RBSP-B RBSP-A -7.0 -7.0 10000 10000 Chorus Choru (LIR) LGW LGW -7.8 -7.8 log₁₀((V/m)²) -8.6 $\log_{10}((\dot{\mathrm{V}}/\mathrm{m})^2)$ -8.6 1000 1000 Average power spectral density Electric integrated over each of the 65 Ηz Hiss Ł -9.3 -9.3 Hiss Hiss pseudo-logarithmically-spaced frequency -10.1 -10.1 100 100 B2(L) and E2(L) for RBSP A and B MS MS -10.9 -10.9 a MS -11.7 -11.7 10 10 2 3 4 5 2 3 4 5 1 1 L shell L shell 10000 -2.7 -2.7 10000 LGW LGW -3.4 -3.4 Chorus Chorus (LB)(LB) Magnetic -4.0 -4.0 1000 1000 log₁₀(nT²) $\log_{10}(nT^2)$ Hz I Hiss Hiss Ł -4.7 -4.7 LGW selection criteria: 100 -5.4 -5.4 100 MS MS MS L-shell ≤ 3 -6.0 -6.0 MS frequency \geq 2 kHz -6.7 -6.7 10 10 2 3 4 5 2 3 4 5 1 L shell L shell Dawn MLT sector (3-9 MLT) From Malaspina et al. GRL 2017

E-field and B-field statistics

Global statistics analysis of LGW E- and B-fields measured by RBSP

Data considered:

- 24.6 millions of Survey measurements including those with low SNRs :
 - B-field values are set to 0 if its SNR < 5
 - E-field values are set to 0 if its SNR < 13 (Malaspina et al., 2017)

Main statistics

- 10 times more powerful B-field events (> 100 pT) during nighttime than daytime.
- Mean $B = 1.0 pT \pm 1.6 pT$ (mainly between 0.5 and 2 pT)
- Mean E = 19.4 ± 58.6 μ V/m, and the median is 5.7 μ V/m (mainly between 10 and 40 μ V/m)
- LGWs are less powerful than whistler mode hiss waves by a factor 1/10 to 1/100

Statistics analysis of LGW E- and B-fields measured by RBSP 20

- **10 times more powerful** events (B > 100 pT or E > 1 mV/m) during **nighttime** than daytime.
- the **day/night difference** is more pronounced for electric field (with a factor ~3 than for the magnetic field (a factor ~2), indicating a stronger attenuation of the electrical field signal during daytimes
- Influence of land on the wave amplitudes, with peaks over the United States, Africa, and Asia/Australia that are 2 to 3 times larger than amplitudes over oceans.
- **Clear decay** of both the E- and B-field LGW mean amplitudes with L < 2 (by a factor $\sim 2-3$ between L = 2.15 and L = 1.15)

Farges et al.

Cea Statistics analysis of LGW E- and B-fields measured by RBSP

- 10 times more powerful events (B > 100 pT or E > 1 mV/m) during nighttime than daytime.
- the day/night difference is more pronounced for electric field (with a factor ~3 than for the magnetic field (a factor ~2), indicating a stronger attenuation of the electrical field signal during daytimes
- Influence of land on the wave amplitudes, with peaks over the U
 States, Africa, and Asia/Australia t are 2 to 3 times larger than amplit over oceans.
- Clear decay of both the E- and B-f
 LGW mean amplitudes with L < 2
 factor ~2-3 between L = 2.15 and _
 1.15)

Statistics analysis of LGW E- and B-fields measured by RBSP

- 10 times more powerful events (B > 100 pT or E > 1 mV/m) during nighttime than daytime.
- the day/night difference is more pronounced for electric field (with a factor ~3 than for the magnetic field (a factor ~2), indicating a stronger attenuation of the electrical field signal during daytimes
- Influence of land on the wave amplitudes, with peaks over the United States, Africa, and Asia/Australia that are 2 to 3 times larger than amplitudes over oceans.
- Clear decay of both the E- and B-field LGW mean amplitudes with L < 2 (by a factor ~2–3 between L = 2.15 and L = 1.15)

Variation of E- and B-field with distance, MLT and L-shell

Cea Variation of E-field power with distance

Nighttime measurements

$$\frac{E^2}{W}(d) = \beta_{sat}^{day/night} \times d^{\alpha_{sat}}$$

(Ripoll et al., GRL, 2019)

- W is the WWLLN (World Wide Lightning Location Network) flash energy
- d is the distance to the nearest magnetic footprint (MFP)
- α_{sat} =-2.35 from *Burkholder et al. (2013)* and d_j < 7000 km (alternative: α_{SAT} =-1.76 from Fiser et al. 2010 & Zahlava et al. 2019)
- β_{sat} is a constant that is representative of the day/night difference

With RBSP Survey data, it is possible to deduce the variability of this power law in L and MLT

Variation of power with distance using RBSP Survey data V1

Power decay law with distance in L and MLT

Electric power decreases nearly quadratically with distance

Similar result for magnetic power which decreases linearly with distance (not shown)

Commissariat à l'énergie atomique et aux énergies alternatives

17 mai 2022

15

Superbolts

Cea Superbolts: strongest lightning flashes

Superbolt?

- Initialy, optically: 100 times more intense than the typical lightning (Turman, 1977)
- Here, VLF electric power: 1000 times the median power (Holzworth et al., 2019)

Superbolt from ground and from Space (Van Allen Probes)

Ripoll, Farges, et al., Nat. Comm., 2021

Cea Simultaneous observation from ground and space

Ripoll, Farges, et al., Nat. Comm., 2021

Ceal Simultaneous observation from ground and space

Ceal Superbolt properties in space

- rare during day time in space while there is a factor 2 between day and night at ground
- 10–1000 times more powerful than normal lightning:
 - 83 pT
 - 873 μV/m
- Strongly contributing to the LGW rms amplitude for L<2 (e.g. 44% at L=1.1)

Ripoll, Farges, et al., Nat. Comm., 2021

Commissariat à l'énergie atomique et aux énergies alternatives

17 mai 2022 23

Conclusions

- High quality of Van Allen Probes wave measurements, showing excellent correlations with a WWLLN proxy (except below L = 2), cf. Ripoll, Farges, et al. (2019).
- ~24.6 millions of LGW electric and magnetic amplitudes were measured in survey mode by the EMFISIS instrument of the Van Allen Probes (80% of the entire mission).
- Take away message:
 - Even though extreme LGW can be very powerful, particularly at low L and during night, the mean electric/magnetic power remains low compared with other whistler waves
 - There is a region in space of low lightning wave amplitude (9–15 hr MLT and L < 2) due to the denser dayside ionosphere. In addition, we find weaker wave amplitudes below L = 1.5 at all MLT, where the ground-level lightning activity is maximal.
 - Thus, there is difficulty of lightning VLF waves to penetrate, or/and to propagate, or/and to remain at low L-shells, certainly due to the denser ionosphere during daytime (in agreement with transmission theory).
 - Empirical laws of the attenuation of the power with distance derived with (L,MLT) dependence. E2 varies with distance quasi quadratically while B2 varies more linearly.
- Study of the high-power tail of the distribution: superbolts are a good candidate of extreme waves to study nonlinear wave-particle interactions