

A preferential switchback orientation

Naïs Fargette, Benoit Lavraud, Alexis P. Rouillard, Victor Réville, Stuart D. Bale, Justin C. Kasper

Programme National Soleil Terre

Table of contents

- 1 Magnetic switchbacks
- 2 Investigating orientation
- 3 Results for all encounters
- 4 Interpretation and discussion

Expected B features close to the Sun

☐ The magnetic field is **radial**

$$B \sim B_R$$

■ Due to flux conservation :

$$B_R \propto rac{1}{r^2}$$

In-situ observations:

perihelion

In-situ observations : magnetic switchbacks

perihelion

In-situ observations: magnetic switchbacks

perihelion

Accelerated folds in the magnetic field

Artist's view (NASA)

Where and how are they formed?

Where and how are they formed?

Through processes in the low atmosphere? (magnetic reconnection, alfven wave generation and steepening with expansion...)

In situ in the solar wind? (turbulence, velocity shears..)

Where and how are they formed?

Through processes in the low atmosphere? (magnetic reconnection, alfven wave generation and steepening with expansion...)

In situ in the solar wind? (turbulence, velocity shears..)

- Do they participate in heating the corona?
- Are they involved in solar wind formation?
- Are they involved in solar wind acceleration?

Table of contents

- 1 Magnetic switchbacks
- 2 Investigating orientation
- **3** Results for all encounters
- 4 Interpretation and discussion

In RTN, a slight bias...

In RTN, a slight bias...

In RTN, a slight bias... due to the Parker spiral

Let us rotate to the local Parker frame (xyz)

and consider the orientation angles in xyz

Orientation angle distribution

A threshold approach is possible but:

- ☐ Threshold is arbitrary
- ☐ The phenomenon is not completely captured
- Hard to characterise the resulting distributions

A modeling approach:

We assume that the solar wind is composed of **two populations**, and that **the deflection angles follow a normal distribution** for each population

- $egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} \mu \sim [0,0] \ \sigma \leq 30^o \end{array}$
- lacksquare The perturbed (SB) solar wind μ,σ

The total distribution we observe is the weighted sum of two 2D gaussians with different means and variances

$$(1-\gamma)~\mathcal{G}(\mu_{f 0},\Sigma_{f 0}) + \gamma~\mathcal{G}(\mu,\Sigma)$$

We fit for the best parameters:

$$\gamma=0.8$$

The switchback population has a biased mean

Table of contents

- 1 Magnetic switchbacks
- 2 Investigating orientation
- 3 Results for all encounters
- 4 Interpretation and discussion

Fitting all encounters

Bias is consistent over all encounters

- Mean of Parker spiral distribution
- Mean of SB distribution

Table of contents

- 1 Magnetic switchbacks
- 2 Investigating orientation
- 3 Results for all encounters
- 4 Interpretation and discussion

A polarity-invariant prefered geometry

-T direction

$$B_r < 0$$

+T direction

Consistent with interchange reconnection

Differential rotation should favor magnetic reconnection in a prefered direction

Fisk and Kasper 2020

Bias is consistent over all encounters

A perturbation compared to...

$$B_T \left(rac{r}{r_0}
ight)$$

$$B_N\left(rac{r}{r_0}
ight)$$

Parker spiral modeling

$$an lpha = rac{-\Omega(r-r_0)}{V_R}$$

R0 = 10 Rs
Vr treated with low pass
filter (tc = 2h)

Parker spiral modeling

$$an lpha = rac{-\Omega(r-r_0)}{V_R}$$

R0 = 10 Rs
Vr treated with low pass
filter (tc = 2h)

Invariant geometry

Fitting convergence

Posterior distribution

