

## Premieres observations simultanees d'ions et d'electrons de faible energie sur Mercure lors du premier survol de BepiColombo

#### Sae Aizawa

(IRAP/JAXA/University of Pisa)

Y. Harada, Y. Saito, N. Andre, M. Persson, D. Delcourt, L. Hadid, M. Fraenz, S. Yokota,

A. Fedorov, E. Penou, A. Barthe, J.-A. Sauvaud, B. Katra, S. Matsuda, G. Murakami

## Mercury's magnetosphere



Plasma mantle

Plasma sphere
Ring current

Ring current

Wind

Magnetopause

Magnetopause

[Singh et al., 2004]

Weak intrinsic magnetic field at Mercury (200 nT at Mercury's surface <= 1% of Earth)



Harsh solar wind condition
(larger dynamic pressure/lower Alfvén Mach number)



Smaller but dynamic magnetosphere ~ 5% of Earth's magnetosphere Dungey cycle : a few minutes

Different coupling system

Earth: SW - magnetosphere - ionosphere

Mercury: SW - magnetosphere - exosphere - surface

SF2A2021 - 08/06/2021 S26

## Past observations and their discovery

#### Mariner 10

#### **Basic information**

- 3 Mercury flybys (1974 1975)
- Electron & Ion detector, Magnetometer

#### **Discovery**

- Global intrinsic magnetic field at Mercury [Ness et al., 1974]
- Ongoing plasma activity like Earth
  [Ogilvie et al., 1977; Slavin et al., 1996; Fairfield and
  Behannon, 1976]



#### **MESSENGER**

#### **Basic information**

- Main purpose: geology, surface composition, magnetic field
- In the orbit from March 2011 to April 2015
- Electron & Ion detector, Magnetometer

#### **Discovery**

- 20% of dipole shift & more precise magnetic moment
- Ion distribution in the magnetosphere

 Ongoing plasma activities (dipolarization, KH waves, reconnection etc.)



[Sun et al., 2020]

## BepiColombo mission

#### The Europe's / Japan's first mission to Mercury

#### Two Spacecraft:

Mio: Mercury Magnetospheric Orbiter (led by JAXA)

- Instruments to observe Mercury's plasma environment

MPO: Mercury Planetary Orbiter (led by ESA)

- Instruments to observe surface, composition, plasma.





## BepiColombo - MEA & MIA /MPPE

Mercury Electron Analyzer (MEA) — MEA1 & MEA2 Mercury Ion Analyzer (MIA)



#### Limited FOV for MPPE due to Sun shield:

Only electrons can be measured in the solar wind Ion data can be obtained during planetary flybys



[Saito et al., 2021]



## Overview of MPPE observation



## Shock crossings with respect to previous observations



## Shock crossings with respect to MESSENGER



BS nose distance: 1.67 RM MP nose distance: 1.22 RM

Estimated dynamic pressure : 28 ~ 60 nPa

(e.g., average dynamic pressure by MESSENGER: ~ 10 nPa)



MP nose distance

[Jia et al., 2019]

## Interesting signatures in MEA and MIA



## Fluctuations in the dusk



|            | frequency/period                 | Observed region  | electrons | ions |
|------------|----------------------------------|------------------|-----------|------|
| This event | 15 - 30 sec                      | Dusk, inside MSP | 0         | 0    |
| КН         | 0.01 - 0.05 Hz<br>(20 - 100 sec) | Mostly dusk      | 1         | 0    |
| ULF        | 0.025 - 0.1 Hz<br>(10 - 40 sec)  | dusk             | -         | ?    |
| ULF        | 0.02 - 0.04 Hz<br>(25 - 50 sec)  | dawn             | -         | ?    |

[ex. Gershman et al., 2015, James et al., 2016; 2018, Liljeblad and Karlsson, 2017]

ULF would be the best candidate
To be further investigated with MPOMAG

#### High energy population and Fluctuations in the dawn





Energy peak :  $80 \text{ eV} \rightarrow 200-300 \text{ eV}$ 

Counts : higher  $\rightarrow$  lower (by factor of  $\sim$  5)

Electrons are significantly accelerated there Associated with fluctuations? Wave-particle interactions?

## Structures along the trajectory



[Lindsay et al., 2016]

- X-ray aurora [Lindsay et al., 2016]
   Electron > a few keV
- Energetic electron and its footprint [Dewey et al., 2017]
   Electron > 300 keV



MEA: a few hundreds of eV

Too low energy to discuss electron precipitation?
But energy is still higher than other region!

Superimposed trajectory is not magnetically connected to the planet

## Support from simulations: Mariner-10 Mercury 1st flyby observation



Time [hh:mm]

#### Orbit : southern dusk → northern dawn



#### Findings from previous studies:

- It took less than an hour to traverse the magnetosphere
- Clear shock crossings in both inbound & outbound
- Cold & Hot electron components
- Two parts in the magnetic field quiet and perturbed Due to the IMF rotation?

  Spacecraft observed its signature ~ 25 min after .. Reasonable?

## Support from simulations (Ex. Mariner-10)



## Support from simulations (Ex. Mariner-10)

# Comparison with real data for both plasma and field Understanding the variation in the data



## **Summary**

- BepiColombo has successfully conducted some planetary flybys (Earth, Venus x2, and Mercury)
- Mercury flyby #1:
  - > First simultaneous observation of low energy electrons and ions has been conducted
  - > Data gaps but clear shock crossings : a bit compressed magnetosphere
  - Interesting signatures in both MEA and MIA: fluctuations, substructures, high-energy component
- Support from simulations:
  - > Powerful tool to understand the physics there
  - > Important to get the magnetic field data ... but not ready! To be done.

Next Mercury flyby is planned for the 23rd of June – Stay Tuned!