THE MAGNETOPAUSE: AN ALMOST TANGENTIAL INTERFACE BETWEEN THE MAGNETOSPHERE AND THE MAGNETOSHEATH

Giulio Ballerini^(1,2), Laurence Rezeau⁽¹⁾, Gerard Belmont⁽¹⁾, Francesco Califano⁽²⁾

(1)Laboratoire de Physique des Plasmas, École Polytechnique, France

(2) Dipartimento di Fisica, Università di Pisa, Italy

Magnetopause: Global vs Local

Magnetopause: Non-stationary and Non-planar

Data from MMS, 05/02/16

Classic Theory of discontinuities

Two solutions: purely rotational and compressive discontinuities

Observations

- Compressional and rotational variations observed in a close vicinity
- → The classic theory of discontinuities is insufficient for describing the magnetopause

Magnetopause: Non-stationary and Non-planar

Data from MMS, 16/10/15

Nonstationarity

- Constant delay for a stationary boundary crossed at a constant velocity
- Variations with a mean value of the same order -or shorter- than the fluctuations

Comparison of Normals

Different normals in the two "subparts" of the same crossing

Purpose

Assuming less strong hypotheses about its structure

Aiming at comparing the particles and fields structures Obtain the normal by using both

- Magnetic field data
- lons velocity and density

Purpose: obtaining the normal to the magnetopause by using the gradient matrix ${\bf G}$ of the magnetic field

Theoretical model

♦ Assume 1D structure

$$G_{\text{fit}} = n B'$$

Variation of **B** along the normal $\mathbf{B'} = [\partial \mathbf{B_x}/\partial \mathbf{n} , \partial \mathbf{B_y}/\partial \mathbf{n} , \partial \mathbf{B_z}/\partial \mathbf{n}]$

Normal vector to the structure

MMS Data

 Obtain **G** by using reciprocal vector method

$$\mathbf{G} = \sum_{s} \mathbf{k}_{s} \mathbf{B}_{s}$$

Minimize the difference between G and G_{fit} to obtain the normal

Purpose: obtaining the normal to the magnetopause by using the gradient matrix ${\bf G}$ of the magnetic field

Theoretical model

❖ Assume 1D structure

$$G_{fit} = n B'$$

- 2 free parameters for **n**
- 3 free parameters for **B**'
- Impose **∇.B**=0
- \rightarrow **G**_{fit} depends on 4 parameters

MMS Data

 Obtain **G** by using reciprocal vector method

$$\mathbf{G} = \sum_{s} \mathbf{k}_{s} \mathbf{B}_{s}$$

Minimize the difference between \mathbf{G} and \mathbf{G}_{fit} to obtain the normal

Purpose: obtaining the normal to the magnetopause by using the gradient matrix G

Theoretical model

❖ Assume 1D structure

$$G_{fit} = n \varrho v_i$$

- 2 free parameters for **n**
- 3 free parameters for ϱv_i , •
- Impose $\nabla \cdot (\varrho \mathbf{v}_i) = -\partial_t \varrho$
- \rightarrow **G**_{fit} depends on 4 parameters

MMS Data

 Obtain **G** by using reciprocal vector method

$$\mathbf{G} = \sum_{s} \mathbf{k}_{s} \left(\varrho \mathbf{v}_{i} \right)_{s}$$

Minimize the difference between ${\bf G}$ and ${\bf G}_{\rm fit}$ to obtain the normal

Linked by a different relation

Defined Particles' normal **n**_{ions}

Results: Comparison with MDD tool (Shi et al, 2006)

Data from MMS, 16/10/15

- New tool: continuous line
- MDD: dotted line
- Agreement between the two methods

Results: Magnetic field vs Ions velocity

0.0

-1.0 18

19

20

22

21

time (s)

Data from MMS, 16/10/15

Statistical study

- ➤ Done on ~150 crossings
- Selected by using the results by Michotte de Welle et al (Prep, 2022)

- Mean angle between the magnetic and particles' normals: 26 deg
 - Correlation: 0.56

Statistical study: Southward vs Northward SW

Southward SW Magnetic Field

- ➤ Cases: 103
- ➤ Correlation: 0.70
- Mean angle between the magnetic and particles' normals:24.0 deg

Northward SW Magnetic Field

- ➤ Cases: 51
 - Correlation: 0.24
- Mean angle between the magnetic and particles' normals:
 32.2 deg

12

Crossing of 05 February 2016 - Out of the diagonal data

3 crossings in 10 minutes

Same two parts crossing in all cases

Virtual satellites on two PIC simulations

BLP

- Simulations run by Federico Lavorenti (OCA, UniPi)
- Purely Northward and Southward SW magnetic field

Virtual satellites on two PIC simulations

Purely Southward SW Magnetic Field

- > 100 random crossings with interpolation
- ➤ Correlation: 0.88
- Mean angle between magnetic and particules' normals: 20.5 deg

Purely Northward SW Magnetic Field

- > 100 random crossings with interpolation
- ➤ Correlation: 0.79
- Mean angle between magnetic and particules' normals: 24.6 deg

Conclusions and Future Perspectives

A new tool

- Allows us to compare particles and magnetic field structures
- Agreement with MDD method

Future perspectives

- Determine the precision of the normals
- Study cases with different magnetic and particles' normals

Thank you for any feedback

Giulio Ballerini, Laurence Rezeau, Gerard Belmont, Francesco Califano

