Where is Magnetic Reconnection occuring on the Magnetopause ?

<u>Bayane Michotte de Welle, Nicolas Aunai, Gautier Nguyen</u> Benoit Lavraud, Vincent Génot, Roch Smets

> Laboratoire de Physique des Plasmas École Polytechnique, France

Credits: NASA Goddard/Mary Pat Hrybyk-Keith; NASA Goddard's Conceptual Image Lab/Josh Masters

Ζ

Ζ

- Assumes :
 - modeled magnetospheric **B** (Tsyganenko 1996)
 - modeled magnetosheath **B** (Kobel et al 1994)

How this modeled map compare to in-situ data?

- Assumes :
 - modeled magnetospheric **B** (Tsyganenko 1996)
 - modeled magnetosheath **B** (Kobel et al 1994)
- Depends only on **B** shear

What about other parameters (\triangle N, \triangle V, etc) ?

How this modeled map compare to in-situ data?

In-situ data are intrinsically local in both time and space

B. Michotte de Welle - PNST 2022

Michotte de Welle et al. (Rejected in Nat. phy.)

Magnetic draping, and Shear angle

Current density, and Reconnection rate

Magnetic field in the magnetosheath from in-situ data

Behannon et al. 1969

Missions :

- Explorers

Mission : - THEMIS

Michotte de Welle et al. (Rejected in Nat. phy.)

Missions :

- Cluster
- DoubleStar
- THEMIS
- MMS

Agreement model/data for radial and perp. IMF

Agreement model/data for radial and perp. IMF

7

Disagreement model/data for intermediate IMF inclination

The magnetosheath flow structures the draping around the MP

The magnetosheath flow structures the draping around the MP

9

The magnetosheath flow structures the draping around the MP

The observed magnetic shear differs from that of the model

10

The observed magnetic shear differs from that of the model

Northward IMF magnetic shear : more symmetric in data

B. Michotte de Welle - PNST 2022

Magnetic draping, and Shear angle

Current density, and Reconnection rate

Current density at the magnetopause

Current density at the magnetopause

Global structure of the reconnection rate ~ MHD models

Global structure of the reconnection rate ~ MHD models

Let's correlate obs. of magnetic reconnection with:

Inferring the X-line location from global reconnection jet maps

• Ion beams and flow jet escaping from the X-line

Inferring the X-line location from global reconnection jet maps

Inferring the X-line location from global reconnection jet maps

Where is Magnetic Reconnection occuring on the Magnetopause ?

- Classification of the near Earth's plasma environnement
- Magnetopause and bow shock models (Poster A. Ghisalberti)
- Global draping of the magnetic field in the dayside magnetosheath
- Magnetic shear maps from in-situ data
- Current density at the magnetopause
- Reconnection rate at the magnetopause

Coming soon :

• Direct evidence of magnetic reconnection (flow jet, flux ropes, ...)

16

• Correlation with the differents reconnection scenarios

Nguyen et al. 2022

10 (Re) Z_{swi} (Re)

The observed magnetic shear differs from that of the model

Mission	AUCMagnetosphere	AUC Magnetosheath	AUC Solar Wind
THEMIS	0.999	0.997	0.999
Cluster 1 (without retraining)	0.988	0.983	0.996
Cluster 1 (with retraining)	0.999	0.998	0.999
Double Star TC1 (without re- training)	0.996	0.992	0.996
Double Star TC1 (with re- training)	0.999	0.998	0.999
MMS (without retraining)	0.997	0.994	0.995
ARTEMIS	0.999	0.999	0.999

Nguyen et al. 2022

 $TPR = \frac{N_{TPs}}{N_{TPs} + N_{FNs}} \qquad FPR = \frac{N_{FPs}}{N_{FPs} + N_{TNs}}$

CrossVal MP

Poster Ambre Ghisablerti

BS

Poster Ambre Ghisablerti

The draping can be considered axisymmetric

The draping can be considered axisymmetric

The draping can be considered axisymmetric

- Neglecting the impact of processes at the MP on the draping
- Considering the boundaries as axisymmetric

The draping can be considered as independent of the clock angle

13