

A. López Ariste

CLIMSO at Pic du Midi

To measure coronal magnetic and velocity fields

Dislocations in MHD waves: Photosphere

López Ariste et al. (2016)

CoMP Data from Threlfall et al. (2013)

Dislocations in MHD waves: Corona

Superoscillations

0.0

3.3 -3.3

0.0

Distance to center (Mm)

3.3

0.0

3.3 -3.3

0.0

3.3

0.0

3.3 **-**-3.3

0.0

0.0

3.3 -3.3

0.0

3.3

0.0

3.3 -3.3

0.0

3.3

Heating through compressive viscosity Porter et al. (1994 a,b) Braginskii (1965)

Coronal plasma is non-newtonian due to the magnetic field It fits in the "strong field regime" of Braginskii

$$Q_{\mu_0} = \frac{\mu_0}{3} \left(\partial_r v_r + \frac{1}{r} \partial_\theta v_\theta + \frac{1}{r} v_r - 2 \partial_z v_z \right)^2$$

López Ariste & Facchin (2018)

Heating coronal plasma

Fast heating Localised heating

Heating coronal plasma

Fast heating Localised heating

Diverging temperature for particular waves

<u>C</u>3

Lens Diameter: 40 cm Focal length: 320 cm (f/8) Length: 500 cm FoV: 2.6 rayons solaires Resolution: 2 "

Lyot Filter

Narrow bandwidth (0.25Å) Fe XIV green line Polarimetry Aperture: 50mm Length: 100mm Max Aol: 3 degrés

Objectif lens 40cm largest coronagraph in the world !

Name	Size(cm)	Place	Status
DKIST	400	Haleakala (Hawaii)	Commissioning
COSMO	100	?	Project
Sayan	53	Siberia	Closed
Caucase	53	Russia	Closed
Solar-C	50	Haleakala	Closed
Evans	40	Sacramento Peak	Closing
Mitaka	25	Japan	Closed
Lomnizcky Stit	22	Slovakia	Operational
CoMP	20	Mauna Loa	Operational
CLIMSO C1 & C2	20	Pic du Midi	Operational
K-Cor	20	Mauna Loa	Operational
Rozhen	15	Bulgaria	Operational
Proba 3	14	Space	Under Construction
Ondrejov	15 & 13	Czech Rep.	Closed
LASCO	4.7	Space	Operational
METIS Solar Orbiter	4	Space	Operational

2019 data

132 observing days for FeXIII over 335 available 180 observing days for Hα in prominences over 335 available

7 Avril 2019 7:35 TU

Fe IX (174Å) observé par le satellite SWAP

2041

ISBUR

à b

Intrinsic Stress birefringence < 2nm $0.03/\lambda$

200 -

0.5

Building C3 in 2 phases

1st Phase: Telescope observing K-corona

2nd Phase: Lyot filter installed.

Lyot Filter

7 double Lyot stages in LiNbO3: 250 mA FWHM 83 mm plus polarisers and prefilter

Lyot filter

0.5A Tunability by applying electric fields on the 3 longest stages

Timeline Phase 1

	Status	Delivery
O1	Polishing	1st week of July
Carbon Tube	Painting	June 6th
Mechanics	Under construction	Last week of June
Detector	Under construction	Mid-June
Optical Support	Mechanisation	May thru June
O2-O3 Optics	Call attending	?

Tarbes: Mechanical tests	July
Tarbes: Optical Alignment	July - September
Transport to Pic du Midi	September - October
1st light Phase 1	October-December

Funding

Observateurs Associés: 150 k€ (FIDUCIAL)

PNST: 4-8 k€ / year for science support

Projet CPER:

1.2 M€ (200 k€ for C3)

The C3 team

Science: OMP - IRAP

Funding:Observateurs Associés - FIDUCIALRégion CPER

Design and construction : Operation: Maintenance: Mise en valeur, vulgarisation: OMP Obs. Associés Obs. Associés OMP Régie du Pic du Midi?

