Mutual Impedance experiments: instrumental modelling and tests in plasma chamber

L. Bucciantini⁽¹⁾, P. Henri^(1,2), G. Wattieaux⁽³⁾, F. Califano⁽⁴⁾

(1): LPC2E, CNRS, Univ. Orléans, OSUC, CNES, Orléans (2): Lagrange, OCA, UCA, CNRS, Nice (3): LAPLACE, CNRS, Univ. Toulouse, Toulouse (4): Univ. Pisa, Pisa

PNST - Marseille - 16-20/05/2022

OUTLINE

1. The context:

- a) Mutual impedance experiments
- b) R&D project COMIX
- c) Objectives

2. Investigation tools:

- a) Numerical simulations
- b) Plasma chamber

3. On-going studies and results:

- a) Effects of large emission amplitudes on mutual impedance experiments
- b) Optimization of mutual impedance antenna occupation time

Instruments for plasma investigation

Mutual impedance probe

Langmuir Probe

QTN

Mass spectrometer

Ion spectrometer

Parameters for plasma characterization

Electron density: n_e

Ion density: n_i

Electron temperature: T_e

Ion temperature: T_i

Electron velocity: $v_{D,e}$

Ion velocity: $v_{D,i}$

1) Mutual impedance experiments

Objectives:

Measure in situ *plasma density* and *electron temperature*

The emission signal:

- Sinusoidal signal
- Fixed amplitude
- Given frequency
- Given amount N of repetitions for each frequency

The reception and data treatment:

Synchronous analysis (DFT)

Mutual impedance spectrum

Mutual impedance experiments on-board recent and future exploratory missions (Rosetta, BepiColombo, JUICE and Comet Interceptor).

From Arcad-3 [Beghin, 1

1)COmpact Mutual Impedance eXperiment (COMIX)

Objective:

Multi-points in situ plasma measurements on-board nanosatellite platforms (space exploration, space weather)

LPC2E

- 1) Adapt the instrument to nanosatellite platforms
- 2) New experimental modes
- 3) Optimize instrument TM through (on-board) data treatment

Funds from CNES

LPC2E LESIA F, Swede

- 4) Couple the instrument with other plasma instruments
 - QTN (K. Issautier, LESIA, Paris Observatory) → P. Dazzi Thesis
 - Langmuir Probe (IRF, Sweden)

1) Objectives

Objective 1:

- Improve SNR
- Relax EMC constraints on platform

Objective 2:

 Minimize the antenna occupation time

OUTLINE

1. The context:

- a) Mutual impedance experiments
- b) R&D project COMIX
- c) Objectives

2. Investigation tools:

- a) Numerical simulations
- b) Plasma chamber

3. On-going studies and results:

- a) Effects of large emission amplitudes on mutual impedance experiments
- b) Optimization of mutual impedance antenna occupation time

2) Numerical model & Plasma chamber

Full kinetic Vlasov Poisson 1D-1V

(algorithm from Mangeney et al., 2002)

• Plasma populations $(\alpha = e, p)$:

$$\frac{\partial f_{\alpha}(x,t,v_{\alpha})}{\partial t} + \boldsymbol{v}_{\alpha} \cdot \nabla f_{\alpha}(x,t,v_{\alpha}) + \frac{q_{\alpha}}{m_{\alpha}} \boldsymbol{E} \cdot \nabla_{\boldsymbol{v}_{\alpha}} f_{\alpha}(x,t,v_{\alpha}) = 0$$

External electric antenna:

$$\nabla \cdot \boldsymbol{E} = -e \frac{n_i(x,t) - n_e(x,t)}{\epsilon_0} \left(\frac{\rho_{ext.}(x,t)}{\epsilon_0} \right)$$

- Boundary conditions:
 - Periodic physical space
 - Distribution functions at zero for ($|v_{\alpha}| > v_{max}^{-}$)

- **1D** model (computation constraints)
 - → constant electric field
- **3D** experimental applications
 - → electric field decreases in distance

- Simulated electric field validated against analytic expressions
- Simulated spectra validated against reference spectra

Parallelized using OpenMP architecture

2) Numerical model & Plasma chamber

The installation:

- Plasma chamber (L=2m, diameter=1m)
- Pumping system (vacuum neutral pressure down to 1e-6 mbar)
- Plasma source (PEPSO project)

Instruments:

- Langmuir Probe (reference n_e and T_e)
- Network analyzer
- Keithley (see P. Dazzi
- Magnetic field compensation system presentation)
- Picoscope (mutual impedance experiments)

OUTLINE

1. The context:

- a) Mutual impedance experiments
- b) R&D project COMIX
- c) Objectives

2. Investigation tools:

- a) Numerical simulations
- b) Plasma chamber

3. On-going studies and results:

- a) Effects of large emission amplitudes on mutual impedance experiments
- b) Optimization of mutual impedance antenna occupation time

3) Effects of large emission amplitudes

Objective:

Assess the impact of strong emission amplitudes on mutual impedance diagnostic performance

Numerical investigation

Spectra normalized to vacuum

Electric-to-thermal energy ratio $E^2 \varepsilon_0$ $n_0 k_B T_e$

3) Effects of large emission amplitudes

 $d_1[\lambda_D]$

10

15

Frequency Plasma density resolution = 5% uncertainty = 10%

Plasma density:

→ the identification procedure <u>is</u> robust to strong emission amplitudes

Electron temperature:

$$\rightarrow$$
 robust for $\frac{E^2 \varepsilon_0}{n_0 k_b T_e} = 0.1$

(Conservative) conclusion:

$$\rightarrow$$
 ok for $\frac{E^2 \varepsilon_0}{n_0 k_b T_e} = 0.1$

To be submitted

3) Minimization of antenna occupation time

Objective:

Reduce the mutual impedance antenna occupation time

Experimental applications: N=10-100

New mutual impedance instrumental mode:

Chirp mode → N=1

Numerical part of the investigation

(Full kinetic Vlasov Poisson 1D-1V)

Ongoing work

- Signal duration: $T_f = \frac{N}{f}$
- Frequency range
- Frequency resolution

3) Minimization of antenna occupation time

Experimental part of the investigation

Ongoing work

Experimental configuration:

- Emitting plate (1D-like electric field)
- Receiving spheres
- Magnetic field compensation

3) Minimization of antenna occupation time

Experimental part of the investigation

Ongoing work

Experimental waveforms of the emitted and received electric signals

Spectra **normalized to** corresponding **vacuum** spectra

Next step:

→ assess the diagnostic performance from the spectra

Conclusions

What is the maximum emission signal amplitude?

$$\frac{E^2 \varepsilon_0}{n_0 k_b T_e} = 0.1$$

Thanks!

Questions?

• What is the minimum emission signal duration?

N=1 (plasma density, electron temperature)

Signal duration:
$$T_f = \frac{N}{f}$$