Parallel Hybrid Particle-In-Cell code with Adaptive Mesh Refinement

N. Aunai

Philip Deegan

Thibault Payet

Andrea Ciardi

Roch Smets

Alexis Jeandet

THE MULTISCALE CHALLENGE

Fully Kinetic

fully kinetic physics, but small

domains, short durations

Fluid « MHD » Global scale system

But no kinetic physics

Solar corona :
$$\delta_e = 20cm$$
 $\delta_i = 10m$ (insane)

$$L = 10^9 m$$

COUPLING MHD WITH FULLY KINETIC MODELS

Kinetic domain position is fixed

Full-PIC is quite heavy: limited spatial domain: no global kinetic ions

COUPLING MHD WITH FULLY KINETIC MODELS

FILLING THE GAP BETWEEN SMALL AND LARGE SCALES

HYBRID KINETIC CAPTURE RECONNECTION DYNAMICS PRETTY WELL

[Sladkov et al. 21]

Hall currents, ion acceleration/heating, collisionless mixing ∂_i Reconnection rate Misses X-line electron scale mechanisms, fully kinetic instabilities Depends on the electron closure equation

$$\partial_t \mathbf{P} = -\mathbf{V}_e \cdot \nabla \mathbf{P} - \mathbf{P} \nabla \cdot \mathbf{V}_e - \mathbf{P} \cdot \nabla \mathbf{V}_e - (\mathbf{P} \cdot \nabla \mathbf{V}_e)^T$$

$$-\frac{e}{m} [\mathbf{P} \times \mathbf{B} + (\mathbf{P} \times \mathbf{B})^T] - \frac{1}{\tau} [\mathbf{P} - \frac{1}{3} \text{Tr}(\mathbf{P}) \mathbf{1}]$$

GLOBAL VLASOV (EULERIAN 6D) HYBRID KINETIC MODEL

Started in ~2010

Advantage: noise free compared to PIC

Drawback: complex and computationally heavy: 2021 first spatial 3D

2D vlasiator run

[S. Hoilijoki et al. 2017]

BEYOND « CLASSICAL » HYBRID PIC CODES

A first step: using a refined grid around a region of interest

- Better than uniform grid
- *Home made* gridding
- Not adaptive

GLOBAL HYBRID PARTICLE IN CELL

[Omelchenko et al. 2012]

Time zones and stretched grids can address this issue but not so flexible

Discrete Event Simulations (DES)
Each node/particle evolved when needed

ADAPTIVE MESH REFINEMENT (AMR) (IN FLUID CODES...)

« finer mesh is more accurate, but more costly »

Refine the mesh where a certain set of criteria is met to provide a better accuracy of the solution in critical regions while keeping a coarser resolution in regions of less interest

AMR is now a mainstream technology in MHD codes

AMR IS RARE IN PIC CODES

Explicit full PIC code with tree (cell)-based AMR still needs mesh Debye-scale

[Fujimoto et al. 2008]

[Muller et al. 2011]

Hybrid PIC with hybrid block AMR, since 2012 only used with fixed grids

AMR ONLY FOR FIELDS

Field equations are solved on each grid leve

However macroparticles only interact with the finest mesh at their location

[adapted from Fujimoto et al. 2008]

Split macroparticles for coarse to fine flux to keep noise constant

Merging does not conserve the distribution function...

MULTI-DOMAIN-MULTI-LEVEL (MLMD) SOLVES AMR PIC ISSUES

Solve all equations (like fluid) on all levels : fields AND particles.

No need to merge macroparticles!

[Innocenti et al. 2013]

Levels are coupled through boundaries and synchronization but otherwise rather independent : opens the way to multi-formalisms. Concept in 1D with implicit PIC

Generalized to 2D

Time subcycling

[Innocenti et al. 2015]

Unfortunately: home-made, limited to 1 (fixed) refined level (but with refined ratio>2)

PHARE: AMR HYBRID-PIC CODE

PHARE

Structured Adaptive Mesh Refinement

AMR Hybrid-PIC

Hybrid or MHD?

SPATIAL DISCRETIZATION

Equations are discretized following the Yee layout [Yee 1966] This conserves $\nabla \cdot {f B} = 0$ intrinsically

TIME DISCRETIZATION

t

Prediction

$$\begin{split} \mathbf{B}_{p1}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n} \\ \mathbf{E}_{p1}^{n+1} &= -\mathbf{u}^{n} \times \mathbf{B}_{p1}^{n+1} + \frac{\nabla \times \mathbf{B}_{p1}^{n+1}}{N^{n}} - \frac{\nabla \cdot \mathbf{P_{e}}}{N^{n}} + \eta \nabla \times \mathbf{B}_{p1}^{n+1} - \nu \nabla^{2} \nabla \times \mathbf{B}_{\mathbf{p}1}^{\mathbf{n}+1} \\ (\mathbf{E}, \mathbf{B})^{n+1/2} &= < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ \mathbf{r}_{p1}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ \mathbf{E}, \mathbf{B} \left(\mathbf{r_{p1}^{n+1/2}} \right) &= \sum_{ijk} \left(\mathbf{E}, \mathbf{B}_{ijk} \right) W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1/2}}| \right) \\ m_{i} \frac{d\mathbf{v_{p1}^{n+1}}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{p} w_{p} \mathbf{v_{p1}^{n+1}} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \qquad u^{n+1} &= \sum_{p} w_{p} \mathbf{v_{p1}^{n+1}} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \end{split}$$

Prediction

$$\begin{split} &\mathbf{B}_{p2}^{n+1} = \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2} \\ &\mathbf{E}_{p2}^{n+1} = -\mathbf{u}^{n+1} \times \mathbf{B}_{p2}^{n+1} + \frac{\nabla \times \mathbf{B}_{p2}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}_{p2}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B}_{\mathbf{p2}}^{\mathbf{n}+1} \\ &\mathbf{r}_{p2}^{n+1/2} = \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ &(\mathbf{E}, \mathbf{B})^{n+1/2} = <(\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ &m_i \frac{d\mathbf{v}_{p2}^{n+1}}{dt} = e\left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2}\right) \\ &N^{n+1} = \sum_{p} w_p \mathbf{v}_{p1}^{n+1} W\left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}|\right) \qquad u^{n+1} = \sum_{p} w_p \mathbf{v}_{p1}^{n+1} W\left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}|\right) \end{split}$$

Correction

$$\begin{split} \mathbf{B}^{n+1} &= \mathbf{B}^n - \Delta t \nabla \times \mathbf{E}^{n+1/2} \\ \mathbf{E}^{n+1} &= -\mathbf{u}^{n+1} \times \mathbf{B}^{n+1} + \frac{\nabla \times \mathbf{B}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B^{n+1}} \end{split}$$

Iterated Crank-Nicholson
Predictor-Predictor-Corrector (PPC)
[Kunz al. 2014]

RECURSIVE TIME STEPPING

COARSE SOLUTION IS TIME/SPACE INTERPOLATED ON FINE BOUNDARIES

Coarse solution is linearly interpolated in time and then linearly interpolated in space on the refined grid.

COARSE SOLUTION IS TIME/SPACE INTERPOLATED ON FINE BOUNDARIES

FINE SOLUTION ARE INTERPOLATED ON THE COARSER UNDERLYING PATCHES

FINE SOLUTION ARE INTERPOLATED ON THE COARSER UNDERLYING PATCHES

VALIDATION OF THE HYBRID SOLVER: WAVE DISPERSION

Dispersion diagram of parallel waves

Small and large crosses represent 1D and 2D

whistler and ion cyclotron waves

$$\omega_{L,R} = \frac{k}{2} \left(\sqrt{1 + 4/k^2} \pm 1 \right)$$

Alfvén waves

$$\omega_A = k$$

1D VALIDATION: RIGHT HAND ION STREAMING INSTABILITY

$$T_i = T_e = 0.1 \quad V_b = 5$$

 $n_m = 1 \quad n_b = 0.01$

Linear theory $\gamma_{th} \approx 0.09$ Model :

 $\gamma_{sim} \approx 0.0908 \pm 0.0053$

Phase space diagram

Structures cross level boundaries without any issue (ouf!)

2D MAGNETIC RECONNECTION

2D MAGNETIC RECONNECTION

[Aunai et al. in prep]

A CODE FOR THE COMMUNITY

100% open source

High perf.
Abstractions

Ergonomy

Tested

- Aim at high performance while maintaining a super user friendly (python) interface
- Target users: simulation experts and non experts (observers, students...), classes
- Extensive unit (>1000) and functional tests at each merge and nightly builds to get a robust code that can be upgraded and maintained