dyablo-Whole Sun

Un nouveau code de simulation sur grille AMR pour la simulation solaire sur architectures exascale

Maxime Delorme (maxime.delorme@cea.fr) Colloque du PNST - Marseille - 19/05/2022

Collaborateurs: Allan-Sacha Brun, Arnaud Durocher, Pierre Kestener, Antoine Strugarek

Whole Sun WPX

Source: Whole Sun website

Why a new code?

Incentive:

- Multi-scale/multi-physics dynamics
- Large variation of temporal and spatial scales
- Different regimes corresponding to different regions
- Global simulations of the Sun
- o Ideally from the radiative interior out to the corona
- At minima link the interior processes and phenomena close to the surface
- Modularity and ease of use
- Testing and implementing new physics
- Performance portability
 - o Being able to run and be efficient on "any" cluster

Limitation of present codes:

- Static meshes
- Limiting physics
- Limiting resolution
- "Expert codes"
- Not adapted for modern architectures

Source: Whole Sun website

Why a new code?

Incentive:

- Multi-scale/multi-physics dynamics
- Large variation of temporal and spatial scales
- Different regimes corresponding to different regions
- Global simulations of the Sun
- o Ideally from the radiative interior out to the corona
- At minima link the interior processes and phenomena close to the surface
- Modularity and ease of use
 - Testing and implementing new physics
- Performance portability
 - o Being able to run and be efficient on "any" cluster

Limitation of present codes:

- Static meshes
- Limiting physics
- Limiting resolution
- "Expert codes"
- Not adapted for modern architectures

Source: Whole Sun website

A case for performance portability

Frontier: AMD CPUs + AMD GPUs

Aurora: Intel CPUs + Intel GPUs

Perlmutter: AMD CPUs + NVidia GPUs

Fugaku: Fujitsu CPUs

Summit: IBM CPUs + NVidia GPUs

Modern architectures are diverse and require adaptation and portability

AMR?

Adaptive Mesh Refinement:

- Allocate more points in interesting [definition needed] regions
- Allows to fit large problems in memory
- Many flavors:
 - Cell-based
 - Block-based
 - Patch-based
- Main challenges:
 - More difficult algorithmics
 - More complex numerical schemes
 - Difficult to parallelize
 - Usually slower than regular grids
 - What's a sensible refinement criterion?

Cell-based AMR

Block-based AMR

dyablo: a high-performance AMR framework

dyablo-Whole Sun: design goals and wishlist [2022]

Physics

- Objective: Global simulation of the Sun, from the radiative interior to the corona
- Ingredients: MHD, viscosity, gravity, thermal conduction, radiative-transfer, rotation, all-Mach

Numerical methods

- Geometry: Adaptive mesh refinement, multiple geometries
- Finite-volumes, with godunov-type method, multiple solvers (muscl-hancock, rk2/rk3, euler)
- Explicit integration of sources (purely explicit, STS, RKL) or IMEX methods
- Adaptive time-stepping
- [Exploratory items: time-parallel methods (parareal), PINNs]

Software engineering

- Performance portable: MPI + shared parallelism
- <u>"Separation of Concerns"</u>: Generic AMR tree traversals/reductions
- Modularity: Plugins and factories system

dyablo-Whole Sun: current state [2022]

Physics

- Objective: Global simulation of the Sun, from the radiative interior to the corona
- Ingredients: MHD, viscosity, gravity, thermal conduction, radiative-transfer, rotation, all-Mach

Numerical methods

- Geometry: Adaptive mesh refinement, multiple geometries
- Finite-volumes, with godunov-type method, multiple solvers (muscl-hancock, rk2/rk3, euler)
- Explicit integration of sources (purely explicit, STS, RKL) or IMEX methods
- Adaptive time-stepping
- Exploratory items: time-parallel methods (parareal), PINNs

Software engineering

- Performance portable: MPI + shared parallelism [CPU intel/AMD; GPU Nvidia]
- Separation of Concerns: Generic AMR tree traversals/reductions
- Modularity: Plugins and factories system

dyablo-Whole Sun: Hydrodynamics tests

Convective hydrodynamics benchmark

Setup

Inspired from <u>Hurlburt 1984</u>, <u>Cattaneo et al 1991</u>, <u>Brummell et al. 1996</u> and <u>2002</u>

TURBULENT COMPRESSIBLE CONVECTION

FAUSTO CATTANEO, NICHOLAS H. BRUMMELL, AND JURI TOOMRE

Joint Institute for Laboratory Astrophysics and Department of Astrophysics, Planetary, and Atmospheric Sciences,
University of Colorado, Boulder, CO 80309-0440

- Ingredients: Compressible hydrodynamics, viscosity, gravity and thermal conduction
- **Domain:** Convective near-surface slab. Highly stratified spanning multiple density scale-heights.
 - Horizontal dimension spans 4 times the vertical dimension
 - Fixed grid resolution: 256²x64
 - o Initial conditions: Polytropic model, hydrostatic equilibrium, random perturbation on pressure
 - Horizontal BCs: periodic
 - Vertical BCs:
 - Imposed temperature at top, Imposed temperature flux at bottom
 - Stress-free impenetrable walls
 - Density recovered from continuity
- Benchmark inputs:
 - \circ Stratification θ
 - \circ Prandtl number σ
- 9 codes involved: dedalus, dispatch, dyablo, hps, idefix, lare3d, muram, pluto, r2d2

Convection benchmark

Increasing Ra

Setup

- Derived by Åke Nordlund in the context of Whole-Sun. Coordinated by Mikolaj Szydlarski
- Ingredients: Compressible hydrodynamics + Newtonian cooling
- ICs:
 - Polytropic model from the base of the convection zone to the cooling layer,
 - Constant temperature above
 - Deterministic perturbation to trigger instability
- Participating codes: bifrost, dispatch, dyablo, (CO)-Mancha

Hydrostatic equilibrium

No cooling, no perturbation, only hydro + gravity

Runs

Runs

AMR Runs (2d)

Base resolution:

128x32

Max resolution: 1024x256

AMR Runs [base level of fixed run is 6]

Base resolution: 64x64x16

Max resolution: 1024x1024x256

AMR Runs [base level of fixed run is 6]

Base resolution: 64x64x16

Max resolution: 512x512x128

dyablo-Whole Sun:

What's next?

▼ PCle Interface

Tremblin et. al (in prep)

Calhoun et. al 2008

Thank you for your attention

Questions?

The scope of performance portability

OpenMP, AVX/SVE, Sycl, OpenACC, [...]

Kokkos: performance portability in C++

A solution to heterogeneous systems

- Open-source modern C++ metaprogramming library
- Developer picks the memory structure, the type of algorithm and provides computation kernels
- Kokkos provides backends to automatically adapt the code to target architectures with minimum overhead

https://github.com/kokkos/kokkos

Carter Edwards, H., Trott, C., Sunderland, D., "Kokkos: Enabling manycore performance portability through polymorphic access patterns", Journal of Parallel and Distributed Computing, 2014

Using the Kokkos ecosystem

SoC : Separation of Concerns

"We all have a specific job"

- Physicists do physics
 - Corollary #1: Physicists don't do Software engineering, code optimization, GPU code, [...]
 - Corollary #2: The parts of the code physicists modify should:
 - 1. Have access to simple interfaces to implement/add functionalities
 - 2. Hide all the complexities of the algorithmic machinery
 - 3. Avoid as many side effects as possible, especially on performance.

Plugin system and Factories

- Abstraction of common parts of the code
- Factory: Let the system create the right object at startup
- **Plugin**: Factory + Concrete Products
 - (M)HD solver, Parabolic Terms, Parabolic Solver, Refinement method, IO methods, etc.

Plugins/Factory example

Code

Compilation

Runtime Parameters

```
[parabolic]
thermal_conduction=ParabolicUpdate_explicit
viscosity=ParabolicUpdate_explicit
uniform_kappa=true
viscosity_type=dynamic
uniform_viscosity_coefficient=true
```

```
[parabolic]
thermal_conduction=ParabolicUpdate_implicit
viscosity=ParabolicUpdate_explicit
uniform_kappa=true
viscosity_type=dynamic
uniform_viscosity_coefficient=true
```

AMR-Cycle

AMR cycle step	PABLO backend	Hashmap backend
Cell marking	On device + transfer	On device*
Mesh adaptation	On host	On device*
Mesh remapping	On device	On device
Load balancing	On host	On device

^{*} CPU <-> GPU transfers due to backward compatibility

In hydrostatic equilibrium

