

Thermal properties of the smallest EUV brightenings observed with SolO/HRI-EUV and SDO/AIA.

A. Dolliou, S. Parenti, F. Auchère, K. Bocchialini, G. Pelouze and the EUI team

1st year PhD thesis

Context: The coronal heating problem

Average temperature in the solar atmosphere

Solar corona observation: SolO/HRI-EUV and SDO/AIA on 30 may 2020

SDO/AIA (launched in 2010)

- Lower Spatial resolution (1300 km at 1 A.U).
- Lower cadence (12 s).
- 6 EUV channels. $T \sim 0.2 8$ MK

SolO/HRI-EUV (launched in 2020)

- Highest Spatial resolution at the time (400 km at 0.558 A.U).
- First time at high cadence (5 s).
- 1 channel at T ~ 1 MK.

Useful to study the plasma thermal evolution.

Useful to detect events at small spatial and temporal scales.

→ My work combines these two imagers.

Coronal heating from small brightenings

HRI-EUV on 30 may 2020

- First detection: 1467 small brightenings during the 5 minute sequence (blue dots).
- T distribution peaks \sim 1 MK. But the method (Differential Emission Measure) used is biaised towards isothermal 1 MK plasma (Guennou et al. 2012).
- → The first step of my work is to confirm if these events are at coronal T.
- → Apply an alternative method to study their thermal evolution, and deduce their T.
- → We need observations at different T: 6 AIA coronal channels (no other data available).

Time lag method on AIA light curves [AS]

Method: for each event, workout the delay (time-lag) between the peaks of emission within the AIA channels.

From simulations: coronal and transition region plasma show different time lags.

Extraction of AIA time lags pixel by pixel (AS)

EUV event pixel (1) vs quiet Sun pixel (2)

Estimation of the background.

 Cross-correlate between a couple of 2 AIA channels

Extract:

- Maximum correlation value
- Associated time offset (time lag)

Extraction of AIA time lags pixel by pixel [AS]

Time lag & maximum correlation maps

AIA channels with decreasing S/N.

- Events have higher correlations and no time lag, compared to quiet sun?
- Results depend on the S/N ratio: we need to assess the effect of noise.

Statistical analysis (I): Maximum correlations & time lags for 193-171

Above 95% detection limit, time lag distributions peak around 0 with a small positive asymmetry.

These results are not caused by noise or background variation alone.

→ Results are caused by the events.

Statistical analysis (II): generalization to LAS the other AIA couples

- All AIA couples return zero time lags, with slight asymmetries.
- Events colder than 1 MK?
- 2. Small loops at coronal temperatures cools very fast?

Conclusion

- The time-lag analysis shows no strong signatures of delay for each couple of AIA channels.
- In some cases, a small lag is seen above the AIA cadence (12 s).
- Interpretation:
 - Compatible with TR emission.
 - Compatible with the cooling timescale of a tiny 1MK loop.
 - → Work in progress to solve this ambiguity.