LDE3 Weekly Flare Bulletin

Adam J. Finley*, Rui Pinto, Barbara Perri, Antoine Strugarek, Sacha Brun, and Chung Pui Hung

CEA Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France *Contact- adam.finley@cea.fr

LE WH AdamF Astro AdamJamesFinley.github.io

Since July 2021, we have maintained a weekly activity bulletin (the responsibility is passed around the LDE3 group, with each of us adding something different, based on our experience).

Keep Ourselves Up-To-Date

Encourporate New Data from Solar Orbiter

Example Bulletin (29th April – 6th May 2022):

LDE3

Weekly summary of spacecraft (notification of alignments and perihelion as observed by both Earth (GOES) and Solar Orbiter (STIX), passes), up-to-date flare locations from the HEK and STIX Flare Loca , with and highlights on interesting events.

PARIS-SACI AY

erc

Make it a Shared Motivation **Track the Increasing** Responsiblity **Activity of the Sun**

Generate Standard Outputs

Find Interesting Events for Followup Investigation and Modelling

In order to facilitate this,

. The Bulletin is sent out to a mailing list each Friday. If you are interested in receiving these activity Bulletins, get in contact and we will add you to the mailing list.

STIX Flare Locator Data in Action!

Since its gravity assist with Earth in November, the field of view of Solar Orbiter has separated from that of Earth. This has allowed STIX, the x-ray instrument onboard Solar Orbiter, to monitor flaring not-visible to Earth.

This has already been useful in **locating sources of Coronal Mass Ejections with no apparent flare.**

The orbital configuration of Solar Orbiter and Earth now has Solar Orbiter monitoring the x-ray activity on the back-side of the Sun, with observations rapidly available on the STIX website.

Summary of

Locations (with

Fields of View

View from

STEREO-A

Tracking Flares on

-1000

-1000

-1000

0

Solar Orbiter

-1000 0

Helioprojective Longitude (Solar-X)

Spacecraft

Rui P @RuipSol (21st March 2022) Replying to @RuipSol and @halocme

and this is where we think the flare occurred (using @stix_so coarse flare location data and some python magic by @AdamF_Astro). The green dashed line is the solar limb as seen from Earth (red: limb as seen by @ESASolarOrbiter). Pretty consistent with LASCO

Over the last few weeks we have been able to track a large AR region from the Earth-side to the back-side (see below), and hopefully we will see it return!

A Recent Snapshot

Here is a summary of the x-ray activity on the Sun from the 6th May using our ever-developing pipeline:

Earth visible Flares are retrieved from the Heliospheric Event Knowledgebase, and overlayed as coloured crosses on the visible EUV emission (AIA-193A)

Currently, STEREO-A has a vantage point of upcoming activity. We display the observed EUV emission (EUVI-193A).

Solar Orbiter is monitoring the back-side of the Sun. ADAPT show the most recent Here we magnetogram (observed field + time-evolution) as viewed from the position of Solar Orbiter. The lare Locator Data, available from the STIX website, is then overplotted with coloured points.

-30

-60

0

60

120

120

Carrington Longitude

180

Carrington Longitude

180 240 300 360

240

300

360

1000

1000

the back-side of In this configuration, we can monitor flare activity the Sun with the over the entire Sun. This snapshot, shows that a **STIX** instrument large AR (previously visible from Earth) has onboard Solar continued to produce flares on the back-side. This Orbiter region is also visible in SDO Helioseismic inversions, another product which could be, in future, encorporated into the weekly Bulletin.

We compile observations from multiple spacecraft/observatories in space and on the ground. These include; the Solar Dynamics Observatory (SDO), Solar and Heliospheric Observatory (SOHO), Solar Terrestrial Relations Observatory (STEREO-A), Solar Orbiter (SolO), the Global Oscillation Network Group (GONG), Hinode X-ray Telescope, Kanzelhoehe Solar Observatory (KSO), and others.

To produce the bulletin we leverage many existing software packages and data repositories. These include; the Heliospheric Event Knowledgebase, the **SunPy** python package, the **stixdcpy** python package, and ESA JHelioviewer.

X1.1-class flare at 13:25 UTC Source not completely identified yet Caused high-frequency communication blackouts over the Atlantic ocean \sim

LDE3